• Title/Summary/Keyword: Rat adrenal gland

Search Result 88, Processing Time 0.026 seconds

Influence of Glibenclamide on Catecholamine Secretion in the Isolated Rat Adrenal Gland

  • No, Hae-Jeong;Woo, Seong-Chang;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.15 no.2
    • /
    • pp.108-117
    • /
    • 2007
  • The aim of the present study was to investigate the effect of glibenclamide, a hypoglycemic sulfonylurea, which selectively blocks ATP-sensitive K$^+$ channels, on secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane depolarization from the isolated perfused rat adrenal glands. The perfusion of glibenclamide (1.0 mM) into an adrenal vein for 90 min produced time-dependently enhanced the CA secretory responses evoked by ACh (5.32 mM), high K$^+$ (a direct membrane depolarizer, 56 mM), DMPP (a selective neuronal nicotinic receptor agonist, 100 ${\mu}$M for 2 min), McN-A-343 (a selective muscarinic M1 receptor agonist, 100 ${\mu}$M for 2 min), Bay-K-8644 (an activator of L-type dihydropyridine Ca$^{2+}$ channels, 10 ${\mu}$M for 4 min) and cyclopiazonic acid (an activator of cytoplasmic Ca$^{2+}$-ATPase, 10 ${\mu}$M for 4 min). In adrenal glands simultaneously preloaded with glibenclamide (1.0 mM) and nicorandil (a selective opener of ATP-sensitive K$^+$ channels, 1.0 mM), the CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were recovered to the considerable extent of the control release in comparison with that of glibenclamide-treatment only. Taken together, the present study demonstrates that glibenclamide enhances the adrenal CA secretion in response to stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization from the isolated perfused rat adrenal glands. It seems that this facilitatory effect of glibenclamide may be mediated by enhancement of both Ca$^{2+}$ influx and the Ca$^{2+}$ release from intracellular store through the blockade of K$_{ATP}$ channels in the rat adrenomedullary chromaffin cells. These results suggest that glibenclamide-sensitive K$_{ATP}$ channels may play a regulatory role in the rat adrenomedullary CA secretion.

Mechanism of Leptin-Induced Potentiation of Catecholamine Secretion Evoked by Cholinergic Stimulation in the Rat Adrenal Medulla

  • Lim, Dong-Yoon;Choi, Deok-Ho;Kang, Moo-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.4
    • /
    • pp.227-235
    • /
    • 2004
  • The aim of the present study was to examine the effect of leptin on CA release from the isolated perfused model of the rat adrenal gland, and to establish its mechanism of action. Leptin $(1{\sim}100\;ng/ml)$, when perfused into an adrenal vein of the rat adrenal gland for 60 min, enhanced a dose-dependently the secretory responses of CA evoked by ACh $(5.32{\times}10^{-3}\;M)$, DMPP $(10^{-4}\;M)$ and McN-A-343 $(10^{-4}\;M)$, although it alone has weak effect on CA secretion. However, it did not affect the CA secretion evoked by excess $K^+\;(5.6{\times}10^{-2}\;M)$. Leptin alone produced a weak secretory response of the CA. Moreover, leptin (10 ng/ml) in to an adrenal vein for 60 min also augmented the CA release evoked by BAY-K-8644, an activator of the dihydropyridine L-type $Ca^{2+}$ channels, and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}$ ATPase. However, in the presence of U0126 $(1\;{\mu}M)$, an inhibitor of mitogen-activated protein kinase (MAPK), leptin no longer enhanced the CA secretion evoked by ACh and DMPP. Furthermore, in the presence of anti-leptin (10 ng/ml), an antagonist of Ob receptor, leptin (10 ng/ml) also no longer potentiated the CA secretory responses evoked by DMPP and Bay-K-8644. Collectively, these experimental results suggest that leptin enhances the CA secretion from the rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors), but does not that by membrane depolarization. It seems that this enhanced effect of leptin may be mediated by activation of U0126-sensitive MAPK through the leptin receptors, which is probably relevant to the activation of the dihydropyridine L-type $Ca^{2+}$ channels located on the rat adrenomedullary chromaffin cells.

Influence of Total Ginseng Saponin on Catecholamine Secretion Evoked by Nicotinic Receptor Stimulation in the Perfused Rat Adrenal Gland

  • Lim Dong-Yoon;Kil Young-Woo
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.401-415
    • /
    • 2002
  • Lim and his coworkers (1987; 1988; 1989) have also found that all of total Ginseng saponin, panaxadiol-and panaxatriol-type saponins cause the increased secretion of catecholamines (CA) in a $Ca^{2+}$ -dependent fashion from the isolated perfused rabbit adrenal glands through the activation of cholinergic (both nicotinic and muscarinic) receptors. These CA secretory effects are partly due to the direct action on the rabbit adrenomedullary chromaffin cells. However, the present study was designed to examine the effect of total ginseng saponin on CA secretion evoked by activation of cholinergic nicotinic receptors in the isolated perfused model of the rat adrenal gland. Total ginseng saponin given (100 ${\mu}g$/20 min) into an adrenal vein did fail to produce alteration of spontaneous CA release from the rat adrenal medulla. Acetylcholine(5.32 mM)- and DMPP(100 ${\mu}M$, a selective nicotinic receptor agonist)-evoked CA secretory responses were reduced markedly after the pretreatment with the total ginseng saponin at a rate of 100 ${\mu}g$/6.2 ml/20 min, respectively. Pretreatment with total ginseng saponin also depressed greatly high potassium (56 mM, a membrane depolarizing agent)- and Bay-K-8644 (10 ${\mu}M$, a calcium channel activator)-induced CA secretions. Taken together, it is thought that total ginseng saponin can inhibit the releasing effect of CA evoked by nicotinic receptor stimulation from the isolated perfused rat adrenal medulla, which seems to be associated to the direct inhibition of influx through L-type calcium channel into the rat adrenomedullary chromaffin cells. It seems that there is species differences in the adrenomedullary catecholamine secretion between the rabbit and rat.

  • PDF

Influence of Histaminergic Receptor Activation on Catecholamine Secretion in The Perfused Rat Adrenal Gland (흰쥐 관류부신에서 Histamine 수용체 활성화가 Catecholamine 분비작용에 미치는 영향)

  • Lim, Dong-Yoon;Rho, Sang-Hyun
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.43-55
    • /
    • 1993
  • The present study was conducted to examine the characteristics of histamine on catecholamine secretion in the isolated perfused rat adrenal gland and to clarify the mechanism of its secretory action. Histamine (37.5 to 150 ug) injected into an adrenal vein evoked a dose-dependent significant secretory response of catecholamines (CA) from the rat adrenal gland. However, upon the repeated injection of histamine (150 ug) at 120 min intervals, CA secretion was rapidly decreased after third injection of histamine. Tachyphylaxis to releasing effects of CA evoked by histamine was observed by the repeated administration. The histamine-induced CA secretion was markedly inhibited by the pretreatment with chlorisondamine, diphenhydramine, ranitidine, $Ca^{++}-free$ Krebs solution, nicardipine and TMB-8 while was not affected by pirenzepine. Moreover, the CA secretion evoked by ACh was considerably reduced by the prior perfusion of histamine $(6.8{\times}10^{-5} M)$ for 30 min. These experimental data suggest that histamine causes secretion of CA in a calcium dependent manner from the perfused rat adrenal gland and that its secretory effect is mediated through activation of both $H_1-$ and $H_2-histaminergic$ receptors located in adrenal medulla, which may be associated with stimulation of cholinergic nicotinic receptors.

  • PDF

Identification of Steroidogenic Acute Regulatory Protein mRNA in the Rat Ovary and Adrenal G land (흰쥐 난소 및 부신에서 Steroidogenic Acute Regulatory Protein mRNA의 발현에 관한 연구)

  • 김명옥
    • Development and Reproduction
    • /
    • v.2 no.1
    • /
    • pp.39-43
    • /
    • 1998
  • The synthesis of steroid hormone starts from cholesterol. Steroidogenic acute regulatory protein(StAR) transfers cholesterol acutely from the outer mitochondrial membranes to the inner in the early step of steroidogenesis. Many kinds of steroid hormones are mainly synthesized in adrenal grand, ovary and testis. The purpose of this study is to determine the distribution of StAR mRNA in the rat ovary and adrenal gland and to confirm the functions of StAR in these organs. In the ovary, StAR mRNAs were strongly expressed in the corpus luteum, where progesterone is synthesized, and these were weakly expressed in the theca layer of follicles, where androgen is synthesized. However, StAR mRNAs were not detected in the estrogen producing granulosa cells of growing follicles. In the corpus luteum, StAR mRNAs were strongly loclized in the zona fasciculata and zona reticularis, where glucocorticoid is mainly synthesized. StAR mRNAs were weakly expressed in the zona gromerulosa, where mineralcorticoid is synthesized. StAR mRNAs were not detected in the adrenal medulla. In our results, StAR mRNAs were expressed differentially in the steroidogenic cells of ovary and adrenal gland according to the types of steroid hormones, and the statges of corpus luteum development. We conclude that StAR is involved in the steroidogenesis at the very early step of steroid synthesis cascade.

  • PDF

Influence of Strychnine on Catecholamine Release Evoked by Activation of Cholinergic Receptors from the Perfused Rat Adrenal Gland

  • Yu, Byung-Sik;Kim, Byeong-Cheol;Oh, Song-Hoon;Kim, Il-Sik;Lee, Bang-Hun;Cho, Seong-Ho;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.3
    • /
    • pp.243-251
    • /
    • 2001
  • The present study was attempted to investigate the effect of strychnine on catecholamine (CA) secretion evoked by ACh, high $K^+,$ DMPP and McN-A-343 from the isolated perfused rat adrenal gland. The perfusion of strychnine $(10^{-4}\;M)$ into an adrenal vein for 20 min produced great inhibition in CA secretory responses evoked by ACh $(5.32{\times}10^{-3}\;M),$ DMPP $(10^{-4}\;M\;for\;2\;min)$ and McN-A-343 $(10^{-4}\;M\;for\;2\;min),$ but did not alter CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M).$ Strychnine itself did also fail to affect basal catecholamine output. Furthermore, in adrenal glands preloaded simultaneously with strychnine $(10^{-4}\;M)$ and glycine (an agonist of glycinergic receptor, $10^{-4}\;M),$ CA secretory responses evoked by ACh, DMPP and McN-A-343 were considerably recovered to some extent when compared with those evoked by treatment with strychnine only. However, CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M)$ was not affected. Taken together, these results demonstrate that strychnine inhibits greatly the CA secretory responses evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors, but does not affect that by membrane depolarization. It is suggested that strychnine-sensitive glycinergic receptors are localized in rat adrenal medullary chromaffin cells.

  • PDF

Mechanism of leptin-induced catecholamine secretion in the perfused rat adrenal medulla

  • Lim, Dong-Yoon;Kim, Ok-Min;Shin, Hye-Gyeong
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.83.2-83.2
    • /
    • 2003
  • It has been demonstrated the presence of leptin receptors (Ob-Ra) on epinephrine-secreting chromaffin cells in rat adrenal medulla, suggesting that leptin may directly affect the adrenal medulla (Cao et al., 1997). Leptin is found to stimulate catecholamine (CA) synthesis in cultured bovine adrenal medullary cells (Utsumomiya et al., 2001; Shibuya et al., 2002)and cultured porcine adrenal medullary cells (Takekoshi et al., 2001). Thus, the present study was designed to examine the effect of leptin on CA release from the isolated perfused rat adrenal gland, and to establish its mechanism of action. (omitted)

  • PDF

Mechanism of Epibatidine-Induced Catecholamine Secretion in the Rat Adrenal Gland

  • Lim, Dong-Yoon;Lim, Geon-Han;Oh, Song-Hoon;Kim, Il-Sik;Kim, Il-Hwan;Woo, Seong-Chang;Lee, Bang-Hun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.3
    • /
    • pp.259-270
    • /
    • 2001
  • The present study was attempted to investigate the characteristics of epibatidine on secretion of catecholamines (CA) from the isolated perfused model of the rat adrenal gland, and to establish the mechanism of action. Epibatidine $(3{\times}10^{-8}\;M)$ injected into an adrenal vein produced a great inhibition in secretory response of CA from the perfused rat adrenal gland. However, upon the repeated injection of epibatidine $(3{\times}10^{-8}\;M)$ at 15 min-intervals, CA secretion was rapidly decreased after second injection of epibatidine. However, there was no statistical difference between CA secretory responses of both 1st and 2nd periods by the successive administration of epibatidine at 120 min-intervals. Tachyphylaxis to releasing effects of CA evoked by epibatidine was observed by the repeated administration. Therefore, in all subsequent experiments, epibatidine was not administered successively more than twice only 120 min-intervals. The epibatidine-induced CA secretion was markedly inhibited by the pretreatment with atropine, chlorisondamine, pirenzepine, nicardipine, TMB-8, and perfusion of $Ca^{2+}-free$ Krebs solution containing EGTA, while was not affected by diphenhydramine. Moreover, the CA secretion evoked by ACh for 1st period $(0{\sim}4\;min)$ was greatly potentiated by the simultaneous perfusion of epibatidine $(1.5{\times}10^{-8}\;M),$ but followed by time-dependently gradual reduction after 2nd period. The CA release evoked by high potassium $(5.6{\times}10^{-8}\;M),$ for 1st period $(0{\sim}4\;min)$ was also enhanced by the simultaneous perfusion of epibatidine, but those after 2nd period were not affected. Taken together, these experimental data suggest that epibatidine causes catecholamine secretion in a calcium dependent fashion from the perfused rat adrenal gland through activation of neuronal cholinergic (nicotinic and muscarinic) receptors located in adrenomedullary chromaffin cells. It also seems that epibatidine-evoked catecholamine release is not relevant to stimulation of histaminergic receptors.

  • PDF

The Influence of Sodium Fluoride on the Release of Catecholamine from Perfused Organs and Monoamine Oxidase Activity (Fluoride가 적출장기(摘出臟器)의 Catecholamine 유리(遊離) 및 Monoamine Oxidase 활성도(活性度)에 미치는 영향(影響))

  • Cheon, Yun-Sook;Kim, Sung-Sook;Lee, Kyung-Hee;Shin, Kyung-Chul
    • The Korean Journal of Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.41-47
    • /
    • 1972
  • Fluorides were supposed to exert a stimulatory action on the catecholamine release. In this study, the authors attempted to investigate the action of sodium fluoride on the catecholamine release from the isolated perfused cow adrenal gland and rat heart. And also the inhibitory effect of sodium fluoride on the monoamine oxidase activity in rat heart and liver mitochondria was investigated. The monoamine oxidase activity was measured by the conversion of benzylamine to benzaldehyde. The results obtained were follows; 1. Sodium fluoride stimulated the release of catecholamine from the isolated perfused cow adrenal gland and rat heart. 2. Sodium fluoride inhibited the rat heart and liver mitochondrial monoamine oxidase activity.

  • PDF

INFLUENCE OF GLUCOCORTICOIDS ON NICOTINIC AND MUSCARINIC STIMULATION-INDUCED CATECHOL-AMINE SECRETION FROM THE RAT ADRENAL GLAND

  • Lim, Dong-Yoon;Lee, Jae-Joon;Park, Cheol-Hee;Ko, Suk-Tai
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.242-242
    • /
    • 1996
  • The influence of glucocorticoids on the secretory responses of catecholamines (CA) evoked by acetylcholine (ACh), DMPP, McN-A-343, excess K$\^$+/ and Bay-K-8644 from the isolated perfused rat adrenal gland and to clarify the mechanism of its action. The perfusion of the synthetic glucocorticoid dexamethasone (10-100 uM) into an adrenal vein for 20min produced relatively a dose-dependent inhibition in CA secretion evoked by ACh (5.32mM), excess K$\^$+/ (56mM), DMPP (a selective nicotinic receptor agonist, 100uM for 2min), McN-A-343 (a muscarinic receptor agonist, 100uM for 4min), Bay-K-8644 (a calcium channel activator, 10 uM for 4min) and cyclopiazonic acid (a releaser of intracellular Ca$\^$2+/, 10uM for 4min).

  • PDF