• Title/Summary/Keyword: Raspberry Pi4

Search Result 99, Processing Time 0.023 seconds

Performance Evaluation on the Parallel Processing System with the Raspberry Pi 4 (라즈베리파이 4 기반 병렬처리 시스템의 성능 평가)

  • Han, Hyeonseung;Kim, Kyungha;Jung, Seungwoo;Chang, Yunseok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.6-8
    • /
    • 2022
  • 병렬처리시스템이 설계와 구축에서 가장 중요한 관점 중의 하나는 비용 대비 성능이다. 본 연구에서는 라즈베리파이 4를 클러스터 방식으로 연결하여 병렬처리 시스템을 구축하였을 때, 클러스터의 병렬처리 성능이 다른 병렬처리 시스템과 유사한 확장성과 병렬처리 성능을 보여주는지를 HPL 벤치마크를 통하여 검증하였다. 실험 결과 라즈베리파이 기반의 병렬처리 시스템이 클러스터의 크기에 따른 병렬 확장성이 있고, 다른 병렬처리 시스템들과 유사한 처리 성능을 가질 수 있음을 확인하였으며, 이를 통하여 라즈베리파이와 같은 저가의 처리장치로도 충분한 크기의 클러스터를 구성할 경우 높은 성능을 기대할 수 있음을 알 수 있다.

Construction and basic performance test of an ICT-based irrigation monitoring system for rice cultivation in UAE desert soil

  • Mohammod, Ali;Md Nasim, Reza;Shafik, Kiraga;Md Nafiul, Islam;Milon, Chowdhury;Jae-Hyeok, Jeong;Sun-Ok, Chung
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.703-718
    • /
    • 2021
  • An irrigation monitoring system is an efficient approach to save water and to provide effective irrigation scheduling for rice cultivation in desert soils. This research aimed to design, fabricate, and evaluate the basic performance of an irrigation monitoring system based on information and communication technology (ICT) for rice cultivation under drip and micro-sprinkler irrigation in desert soils using a Raspberry Pi. A data acquisition system was installed and tested inside a rice cultivating net house at the United Arab Emirates University, Al-Foah, Al-Ain. The Raspberry Pi operating system was used to control the irrigation and to monitor the soil water content, ambient temperature, humidity, and light intensity inside the net house. Soil water content sensors were placed in the desert soil at depths of 10, 20, 30, 40, and 50 cm. A sensor-based automatic irrigation logic circuit was used to control the actuators and to manage the crop irrigation operations depending on the soil water content requirements. A developed webserver was used to store the sensor data and update the actuator status by communicating via the Pi-embedded Wi-Fi network. The maximum and minimum average soil water contents, ambient temperatures, humidity levels, and light intensity values were monitored as 33.91 ± 2 to 26.95 ± 1%, 45 ± 3 to 24 ± 3℃, 58 ± 2 to 50 ± 4%, and 7160-90 lx, respectively, during the experimental period. The ICT-based monitoring system ensured precise irrigation scheduling and better performance to provide an adequate water supply and information about the ambient environment.

3D Scanning Embedded System Design (3D 스캐닝 임베디드 시스템 설계)

  • Hong, Seonhack;Cho, Kyungsoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.49-56
    • /
    • 2017
  • It is the approach of embedded system design that finds 3D scanning technology to analyze a real object or environment to collect data on its shape and appearance. 3D laser scanning developed during the last half of 20th century in an attempt to accurately recreate the surfaces of various objects. 1960s, early scanners used lights, cameras, and projectors to carry out the scanning in the lacks of performance which encountered many difficulties with shiny, mirroring, or transparent objects. The 3D scanning technology has leveled-up with helpful of embedded software platform research and design. In this paper, First we designed the hardware of laser/camera setup and turntable moving part which is the base of object. Second, we introduced the process of scanning 3D data with software and analyzed the resulting scanned image on the web server. Last, we made the 3D scanning embedded device with 3D printing model and experimented the 3D scanning performance with Raspberry Pi.

A Comparison of the Construction for IoT System in Smart Clothing

  • Ko, Jooyoung;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.2 no.4
    • /
    • pp.327-332
    • /
    • 2015
  • Recently, as microcomputers and sensors have been miniaturized due to dropdown of their market rates, this lead to a favorable environment for implementing the Internet of Things. Smart clothing refers to a system which can be wearable or portable, and allows people to communicate or conduct sensing. Applying the Internet of things, the role of the server computer is to receive and process data obtained from the sensor. An ordinary PC can act as a server but during the implementation of IoT, a PC has limited application due to a large size and the inconvenient portability. This study proposes a model that allows a variety of functions while implementation with the server from the sensing using the Arduino and Raspberry Pi. If we apply this proposed model, everyone can easily and inexpensively experience mobile IoT system.

Apple Sorting Machine by its Color (색에 따른 사과 분류기)

  • Tun, Pyei Phyoe Wai;Kim, Soo-Chan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.4
    • /
    • pp.154-161
    • /
    • 2020
  • This paper presented the basics of using a sorting system to reduce human effort and increase accuracy. The proposed system has consisted of a camera, motors, and a Raspberry Pi. This system can classify the apples as immature, mature, ripe condtion, and etc. In this experiment, 100 apples were randomly selected by purchasing various apples from a local market. The accuracy percentage was 95% and processing time was about 8 seconds per each apple. The proposed system could be useful to reduce labor.

Implementation of Gas Sensor-based Scent Collector (가스 센서 기반 향 수집기 구현)

  • Lee, Youn-Sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.336-337
    • /
    • 2018
  • This paper presents an implementation of a scent collector to collect various scent using a multi-gas sensor. The proposed scent collector is implemented with a solenoid valve, a vacuum pump, a chamber containing four gas sensors, and a Raspberry Pi. To verify the functionality of the proposed scent collector, experiments were conducted to collect five scent sources.

  • PDF

Implementation of a Dashcam System using a Rotating Camera (회전 카메라를 이용한 블랙박스 시스템 구현)

  • Kim, Kiwan;Koo, Sung-Woo;Kim, Doo Yong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.34-38
    • /
    • 2020
  • In this paper, we implement a Dashcam system capable of shooting 360 degrees using a Raspberry Pi, shock sensors, distance sensors, and rotating camera with a servo motor. If there is an object approaching the vehicle by the distance sensor, the camera rotates to take a video. In the event of an external shock, videos and images are stored in the server to analyze the cause of the vehicle's accident and prevent the user from forging or tampering with videos or images. We also implement functions that transmit the message with the location and the intensity of the impact when the accident occurs and send the vehicle information to an insurance authority with by linking the system with a smart device. It is advantage that the authority analyzes the transmitted message and provides the accident handling information giving the user's safety and convenience.

A Study on Distributed System Construction and Numerical Calculation Using Raspberry Pi

  • Ko, Young-ho;Heo, Gyu-Seong;Lee, Sang-Hyun
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.194-199
    • /
    • 2019
  • As the performance of the system increases, more parallelized data is being processed than single processing of data. Today's cpu structure has been developed to leverage multicore, and hence data processing methods are being developed to enable parallel processing. In recent years desktop cpu has increased multicore, data is growing exponentially, and there is also a growing need for data processing as artificial intelligence develops. This neural network of artificial intelligence consists of a matrix, making it advantageous for parallel processing. This paper aims to speed up the processing of the system by using raspberrypi to implement the cluster building and parallel processing system against the backdrop of the foregoing discussion. Raspberrypi is a credit card-sized single computer made by the raspberrypi Foundation in England, developed for education in schools and developing countries. It is cheap and easy to get the information you need because many people use it. Distributed processing systems should be supported by programs that connected multiple computers in parallel and operate on a built-in system. RaspberryPi is connected to switchhub, each connected raspberrypi communicates using the internal network, and internally implements parallel processing using the Message Passing Interface (MPI). Parallel processing programs can be programmed in python and can also use C or Fortran. The system was tested for parallel processing as a result of multiplying the two-dimensional arrangement of 10000 size by 0.1. Tests have shown a reduction in computational time and that parallelism can be reduced to the maximum number of cores in the system. The systems in this paper are manufactured on a Linux-based single computer and are thought to require testing on systems in different environments.

LTE Load Balancer for Emergency Based on Raspberry Pi and OpenWRT (라즈베리 파이를 활용한 OpenWRT 기반 LTE 비상망 로드밸런서)

  • Baek, Seung-Hyun;Jang, Min-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.97-110
    • /
    • 2019
  • Recently, the 4th Industrial Revolution has been emerged and various products are developed and commercialized in preparation of the communication failure. Many solutions are underway in Back-Up Network for IDC Servers, but not in the personal or sensor for low-power system use. Therefore we used the OpenWRT Firmware in Raspberry Pi which can be easily obtained in online market, and it created a low-power load balancer. Therefore, we developed the device that uses LTE Antenna based on USB Interface for communication fault notification and important data. The equipment used in this paper is easy to buy in online shop for anyone. Also, it can be applied in other vendors' boards by using USB. We hope that this paper will contribute to the stability of individual sensor networks.

Development of a Data Acquisition System for the Long-term Monitoring of Plum (Japanese apricot) Farm Environment and Soil

  • Akhter, Tangina;Ali, Mohammod;Cha, Jaeyoon;Park, Seong-Jin;Jang, Gyeang;Yang, Kyu-Won;Kim, Hyuck-Joo
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.426-439
    • /
    • 2018
  • Purpose: To continuously monitor soil and climatic properties, a data acquisition system (DAQ) was developed and tested in plum farms (Gyewol-ri and Haechang-ri, Suncheon, Korea). Methods: The DAQ consisted of a Raspberry-Pi processor, a modem, and an ADC board with multiple sensors (soil moisture content (SEN0193), soil temperature (DS18B20), climatic temperature and humidity (DHT22), and rainfall gauge (TR-525M)). In the laboratory, various tests were conducted to calibrate SEN0193 at different soil moistures, soil temperatures, depths, and bulk densities. For performance comparison of the SEN0193 sensor, two commercial moisture sensors (SMS-BTA and WT-1000B) were tested in the field. The collected field data in Raspberry-Pi were transmitted and stored on a web server database through a commercial communications wireless network. Results: In laboratory tests, it was found that the SEN0193 sensor voltage reading increased significantly with an increase in soil bulk density. A linear calibration equation was developed between voltage and soil moisture content depending on the farm soil bulk density. In field tests, the SEN0193 sensor showed linearity (R = 0.76 and 0.73) between output voltage and moisture content; however, the other two sensors showed no linearity, indicating that site-specific calibration is important for accurate sensing. In the long-term monitoring results, it was observed that the measured climate temperature was almost the same as website information. Soil temperature information was higher than the values measured by DS18B20 during spring and summer. However, the local rainfall measured using TR 525M was significantly different from the values on the website. Conclusion: Based on the test results obtained using the developed monitoring system, it is thought that the measurement of various parameters using one device would be helpful in monitoring plum growth. Field data from the local farm monitoring system can be coupled with website information from the weather station and used more efficiently.