• Title/Summary/Keyword: Raspberry Pi 4

Search Result 102, Processing Time 0.016 seconds

The Arduino based Window farm Monitoring System (아두이노를 활용한 창문형 수경재배 모니터링 시스템)

  • Park, Young-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.563-569
    • /
    • 2018
  • This paper is on the implementation of a system for automatically monitoring window farm hydroponics based on Arduino (utilizing Arduino's open source code) emerging as the icon of the Fourth Industrial Revolution. A window farm, which means window-type hydroponics, is offered as an alternative to fulfill the desires of people who want to grow plants aside from the busy daily life in the city. The system proposed in this paper was developed to automatically monitor a window farm hydroponics cultivation environment using the Arduino UNO board, a four-charmel motor shield, temperature and humidity sensors, illumination sensors, and a real-time clock module. Modules for hydroponics have been developed in various forms, but power consumption is high because most of them use general power and motors. Since it is not a system that is monitored automatically, there is a disadvantage in that an administrator always has to manage its operational state. The system is equipped with a water supply that is most suitable for a plant growth environment by utilizing temperature, humidity, and light sensors, which function as Internet of Things sensors. In addition, the real-time clock module can be used to provide a more appropriate water supply. The system was implemented with sketch code in a Linux environment using Raspberry Pi 3 and Arduino UNO.

Design and Implementation of Cost-effecive Public Bicycle Sharing System based on IoT and Access Code Distribution (사물 인터넷과 액세스 코드 배포 기반의 경제적인 공공 자전거 공유 시스템의 설계 및 구현)

  • Bajracharya, Larsson;Jeong, Jongmun;Hwang, Mintae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1123-1132
    • /
    • 2018
  • In this paper, we design and implement a public bicycle sharing system based on smart phone application capable of distributing access codes via internet connection. When smartphone user uses the application to request a bicycle unlock code, server receives the request and sends an encrypted code, which is used to unlock the bicycle at the station and the same code is used to return the bicycle. The station's hardware prototypes were built on top of Internet devices such as raspberry pi, arduino, keypad, and motor driver, and smartphone application basically includes shared bike rental and return functionality. It also includes an additional feature of reservation for a certain time period. We tested the implemented system, and found that it is efficient because it shows the average of 3-4 seconds delay. The system can be implemented to manage multiple bikes with a single control box, and as the user can use a smartphone application, this makes the system more cost effective.