• 제목/요약/키워드: Ras mutations

검색결과 43건 처리시간 0.027초

Mitogen-Activated Protein Kinase Signal Transduction in Solid Tumors

  • Lei, Yuan-Yuan;Wang, Wei-Jia;Mei, Jin-Hong;Wang, Chun-Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권20호
    • /
    • pp.8539-8548
    • /
    • 2014
  • Mitogen-activated protein kinase (MAPK) is an important signaling pathway in living beings in response to extracellular stimuli. There are 5 main subgroups manipulating by a set of sequential actions: ERK(ERK1/ERK2), c-Jun N(JNK/SAPK), p38 MAPK($p38{\alpha}$, $p38{\beta}$, $p38{\gamma}$ and $p38{\delta}$), and ERK3/ERK4/ERK5. When stimulated, factors of upstream or downstream change, and by interacting with each other, these groups have long been recognized to be related to multiple biologic processes such as cell proliferation, differentiation, death, migration, invasion and inflammation. However, once abnormally activated, cancer may occur. Several components of the MAPK network have already been proposed as targets in cancer therapy, such as p38, JNK, ERK, MEK, RAF, RAS, and DUSP1. Among them, alteration of the RAS-RAF-MEK-ERK-MAPK(RAS-MAPK) pathway has frequently been reported in human cancer as a result of abnormal activation of receptor tyrosine kinases or gain-of-function mutations in genes. The reported roles of MAPK signaling in apoptotic cell death are controversial, so that further in-depth investigations are needed to address these controversies. Based on an extensive analysis of published data, the goal of this review is to provide an overview on recent studies about the mechanism of MAP kinases, and how it generates certain tumors, as well as related treatments.

The Influence of Biomarker Mutations and Systemic Treatment on Cerebral Metastases from NSCLC Treated with Radiosurgery

  • Lee, Min Ho;Kong, Doo-Sik;Seol, Ho Jun;Nam, Do-Hyun;Lee, Jung-Il
    • Journal of Korean Neurosurgical Society
    • /
    • 제60권1호
    • /
    • pp.21-29
    • /
    • 2017
  • Objective : The purpose of this study was to analyze outcomes and identify prognostic factors in patients with cerebral metastases from non-small cell lung cancer (NSCLC) treated with gamma knife radiosurgery (GKS) particularly, focusing on associations of biomarkers and systemic treatments. Methods : We retrospectively reviewed the medical records of 134 patients who underwent GKS for brain metastases due to NSCLC between January 2002 and December 2012. Representative biomarkers including epidermal growth factor receptor (EGFR) mutation, K-ras mutation, and anaplastic lymphoma kinase (ALK) mutation status were investigated. Results : The median overall survival after GKS was 22.0 months (95% confidence interval [CI], 8.8-35.1 months). During follow-up, 63 patients underwent salvage treatment after GKS. The median salvage treatment-free survival was 7.9 months (95% CI, 5.2-10.6 months). Multivariate analysis revealed that lower recursive partition analysis (RPA) class, small number of brain lesions, EGFR mutation (+), and ALK mutation (+) were independent positive prognostic factors associated with longer overall survival. Patients who received target agents 30 days after GKS experienced significant improvements in overall survival and salvage treatment-free survival than patients who never received target agents and patients who received target agents before GKS or within 30 days (median overall survival: 5.0 months vs. 18.2 months, and 48.0 months with p-value=0.026; median salvage treatment-free survival: 4.3 months vs. 6.1 months and 16.6 months with p-value=0.006, respectively). To assess the influence of target agents on the pattern of progression, cases that showed local recurrence and new lesion formation were analyzed according to target agents, but no significant effects were identified. Conclusion : The prognosis of patients with brain metastases of NSCLC after GKS significantly differed according to specific biomarkers (EGFR and ALK mutations). Our results show that target agents combined with GKS was related to significantly longer overall survival, and salvage treatment-free survival. However, target agents were not specifically associated with improved local control of the lesion treated by GKS either development of new lesions. Therefore, it seems that currently popular target agents do not affect brain lesions themselves, and can prolong survival by controlling systemic disease status.

Antitumor Activity of Combination Therapy with Metformin and Trametinib in Non-Small Cell Lung Cancer Cells

  • Ko, Eunjeong;Baek, Seungjae;Kim, Jiwon;Park, Deokbae;Lee, Youngki
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권2호
    • /
    • pp.113-123
    • /
    • 2020
  • Metformin has been widely used as an antidiabetic drug, and reported to inhibit cell proliferation in many cancers including non-small cell lung cancer (NSCLC). In NSCLC cells, metformin suppresses PI3K/AKT/mTOR signaling pathway, but effect of metformin on RAS/RAF/MEK/ERK signaling pathway is controversial; several studies showed the inhibition of ERK activity, while others demonstrated the activation of ERK in response to metformin exposure. Metformin-induced activation of ERK is therapeutically important, since metformin could enhance cell proliferation through RAS/RAF/MEK/ERK pathway and lead to impairment of its anticancer activity suppressing PI3K/AKT/mTOR pathway, requiring blockade of both signaling pathways for more efficient antitumor effect. The present study tested the combination therapy of metformin and trametinib by monitoring the alterations of regulatory effector proteins of cell signaling pathways and the effect of the combination on cell viability in NCI-H2087 NSCLC cells with NRAS and BRAF mutations. We show that metformin alone blocks PI3K/AKT/mTOR signaling pathway but induces the activation and phosphorylation of ERK. The combination therapy synergistically decreased cell viability in treatment with low doses of two drugs, while it gave antagonistic effect with high doses. These findings suggest that the efficacy of metformin and trametinib combination therapy may depend on the alteration of ERK activity induced by metformin and specific cellular context of cancer cells.

Intracranial Germ Cell Tumor in the Molecular Era

  • Phi, Ji Hoon;Wang, Kyu-Chang;Kim, Seung-Ki
    • Journal of Korean Neurosurgical Society
    • /
    • 제61권3호
    • /
    • pp.333-342
    • /
    • 2018
  • Intracranial germ cell tumors (iGCTs) are a heterogeneous group of tumors with peculiar characteristics clearly distinguished from other brain tumors of neuroepithelial origin. Diverse histology, similarity to gonadal GCT, predilection to one sex, and geographic difference in incidence all present enigmas and fascinating challenges. The treatment of iGCT has advanced for germinoma to date; thus, clinical attention has shifted from survival to long-term quality of life. However, for non-germinomatous GCT, current protocols provide only modest improvement and more innovative therapies are needed. Recently, next-generation sequencing studies have revealed the genomic landscape of iGCT. Novel mutations in the KIT-RAS-MAPK and AKT-MTOR pathways were identified. More importantly, methylation profiling revealed a new method to assess the pathogenesis of iGCT. Molecular research will unleash new knowledge on the origin of iGCT and solve the many mysteries that have lingered on this peculiar neoplasm for a long time.

Phosphorylation of SAV1 by mammalian ste20-like kinase promotes cell death

  • Park, Byoung-Hee;Lee, Yong-Hee
    • BMB Reports
    • /
    • 제44권9호
    • /
    • pp.584-589
    • /
    • 2011
  • The mammalian ste20-like kinase (MST) pathway is important in the regulation of apoptosis and cell cycle and emerges as a novel tumor suppressor pathway. MST-induced phosphorylation of Salvador homolog 1 (SAV1), which is a scaffold protein, has not been evaluated in detail. We performed a mass spectrometric analysis of the SAV1 protein that was co-expressed with MST2. Phosphorylation was detected at Thr-26, Ser-27, Ser-36 and Ser-269. Although single or double mutations had little effects, the mutation of all four residues in SAV1 to Ala (SAV1-4A) had inhibitory effects on the MST pathway. MST2-mediated induction of SAV1-4A protein levels, SAV1-4A interaction with MST2 and the self-dimerization of SAV1-4A were weaker compared to those of wild-type SAV1. SAV1-4A inhibited MST2- and K-RasG12V-induced cell death of MCF7 cells. These results suggest that MST-mediated phosphorylation of four residues within SAV1 may be important in the induction of cell death by the MST pathway.

Connecting the dots between SHP2 and glutamate receptors

  • Ryu, Hyun-Hee;Kim, Sun Yong;Lee, Yong-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권2호
    • /
    • pp.129-135
    • /
    • 2020
  • SHP2 is an unusual protein phosphatase that functions as an activator for several signaling pathways, including the RAS pathway, while most other phosphatases suppress their downstream signaling cascades. The physiological and pathophysiological roles of SHP2 have been extensively studied in the field of cancer research. Mutations in the PTPN11 gene which encodes SHP2 are also highly associated with developmental disorders, such as Noonan syndrome (NS), and cognitive deficits including learning disabilities are common among NS patients. However, the molecular and cellular mechanism by which SHP2 is involved in cognitive functions is not well understood. Recent studies using SHP2 mutant mice or pharmacological inhibitors have shown that SHP2 plays critical role in learning and memory and synaptic plasticity. Here, we review the recent studies demonstrating that SHP2 is involved in synaptic plasticity, and learning and memory, by the regulation of the expression and/or function of glutamate receptors. We suggest that each cell type may have distinct paths connecting the dots between SHP2 and glutamate receptors, and these paths may also change with aging.

Biomarkers for the lung cancer diagnosis and their advances in proteomics

  • Sung, Hye-Jin;Cho, Je-Yoel
    • BMB Reports
    • /
    • 제41권9호
    • /
    • pp.615-625
    • /
    • 2008
  • Over a last decade, intense interest has been focused on biomarker discovery and their clinical uses. This interest is accelerated by the completion of human genome project and the progress of techniques in proteomics. Especially, cancer biomarker discovery is eminent in this field due to its anticipated critical role in early diagnosis, therapy guidance, and prognosis monitoring of cancers. Among cancers, lung cancer, one of the top three major cancers, is the one showing the highest mortality because of failure in early diagnosis. Numerous potential DNA biomarkers such as hypermethylations of the promoters and mutations in K-ras, p53, and protein biomarkers; carcinoembryonic antigen (CEA), CYFRA21-1, plasma kallikrein B1 (KLKB1), Neuron-specific enolase, etc. have been discovered as lung cancer biomarkers. Despite extensive studies thus far, few are turned out to be useful in clinic. Even those used in clinic do not show enough sensitivity, specificity and reproducibility for general use. This review describes what the cancer biomarkers are for, various types of lung cancer biomarkers discovered at present and predicted future advance in lung cancer biomarker discovery with proteomics technology.

Spry2 does not directly modulate Raf-1 kinase activity in v-Ha-ras-transformed NIH 3T3 fibroblasts

  • Ahn, Jun-Ho;Eum, Ki-Hwan;Lee, Michael
    • BMB Reports
    • /
    • 제43권3호
    • /
    • pp.205-211
    • /
    • 2010
  • Sprouty (Spry) proteins have previously been suggested as negative regulators of the MAPK pathway through interaction with Raf-1. However, the molecular basis of this inhibition has not been elucidated. In this study, we used cells expressing FLAGtagged Raf-1 with point mutations at known phosphorylation sites to reveal that activation of Raf-1 mutants does not correlate with their degree of interaction with Spry2. The association of Raf-1 with Spry2 in intact cells was further corroborated by immunofluorescence colocalization. Additionally, there was no significant change observed in the strength of interaction between Raf-1 mutants and Spry2 after paclitaxel treatment despite differences in the activation levels of these mutants. Thus, our study provides the evidence that Spry2 does not directly regulate Raf-1 kinase activity, but instead acts as a scaffolding protein that assists interactions between Raf-1 kinase and its direct regulators.

Clinical Pearls and Advances in Molecular Researches of Epilepsy-Associated Tumors

  • Phi, Ji Hoon;Kim, Seung-Ki
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권3호
    • /
    • pp.313-320
    • /
    • 2019
  • Brain tumors are the second most common type of structural brain lesion that causes chronic epilepsy. Patients with low-grade brain tumors often experience chronic drug-resistant epilepsy starting in childhood, which led to the concept of long-term epilepsy-associated tumors (LEATs). Dysembryoplastic neuroepithelial tumor and ganglioglioma are representative LEATs and are characterized by young age of onset, frequent temporal lobe location, benign tumor biology, and chronic epilepsy. Although highly relevant in clinical epileptology, the concept of LEATs has been criticized in the neuro-oncology field. Recent genomic and molecular studies have challenged traditional views on LEATs and low-grade gliomas. Molecular studies have revealed that low-grade gliomas can largely be divided into three groups : LEATs, pediatric-type diffuse low-grade glioma (DLGG; astrocytoma and oligodendroglioma), and adult-type DLGG. There is substantial overlap between conventional LEATs and pediatric-type DLGG in regard to clinical features, histology, and molecular characteristics. LEATs and pediatric-type DLGG are characterized by mutations in BRAF, FGFR1, and MYB/MYBL1, which converge on the RAS-RAF-MAPK pathway. Gene (mutation)-centered classification of epilepsy-associated tumors could provide new insight into these heterogeneous and diverse neoplasms and may lead to novel molecular targeted therapies for epilepsy in the near future.

Noonan syndrome and RASopathies: Clinical features, diagnosis and management

  • Lee, Beom Hee;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • 제16권1호
    • /
    • pp.1-9
    • /
    • 2019
  • Noonan syndrome (NS) and NS-related disorders (cardio-facio-cutaneous syndrome, Costello syndrome, NS with multiple lentigines, or LEOPARD [lentigines, ECG conduction abnormalities, ocular hypertelorism, pulmonic stenosis, abnormal genitalia, retardation of growth and sensory neural deafness] syndrome) are collectively named as RASopathies. Clinical presentations are similar, featured with typical facial features, short stature, intellectual disability, ectodermal abnormalities, congenital heart diseases, chest & skeletal deformity and delayed puberty. During past decades, molecular etiologies of RASopathies have been growingly discovered. The functional perturbations of the RAS-mitogen-activated protein kinase pathway are resulted from the mutation of more than 20 genes (PTPN11, SOS1, RAF1, SHOC2, BRAF, KRAS, NRAS, HRAS, MEK1, MEK2, CBL, SOS2, RIT, RRAS, RASA2, SPRY1, LZTR1, MAP3K8, MYST4, A2ML1, RRAS2). The PTPN11 (40-50%), SOS1 (10-20%), RAF1 (3-17%), and RIT1 (5-9%) mutations are common in NS patients. In this review, the constellation of overlapping clinical features of RASopathies will be described based on genotype as well as their differential diagnostic points and management.