• 제목/요약/키워드: Rare earth material

검색결과 152건 처리시간 0.027초

모나자이트로부터 파생된 희토류 혼합산화물의 특성 (A Study on the Characterization of the Mixed-Oxide Prepared from Monazite)

  • 권영식;김연식;김동수
    • 대한화학회지
    • /
    • 제39권12호
    • /
    • pp.946-954
    • /
    • 1995
  • 알카리 fritting법에 의해 모나자이트로부터 얻은 희토류혼합산화물을 대상으로 하여 활용면을 고려한 그 물질의 주요 특성을 조사하였다. 그 결과 이 물질은 희토류원소의 산화물고용체로서 그 구조는 형석구조이며, 밀도는 6.75g/$cm^3$이다. 분말상태인 이 물질은 평균입도가 약 1${\mu}m.$인 균일한 미립으로 구성되어 있다. 이 물질은 가열처리함에 따라 결정성은 향상되었으며 염산에 의한 용해도는 반대로 감소함을 알게 되었다. 이 물질을 단시간(30분)내로 완전히 수용액화하려면 진한 염산속에서 70$^{\circ}C$ 이상 가열을 요한다. 제타전위의 측정 결과 이 물질의 수용액에 있어서의 등전점(I.E.P.)은 pH 8.6에 있음을 알게 되었다.

  • PDF

니켈 제련기술의 현황 (Current Status of Nickel Smelting Technology)

  • 손호상
    • 자원리싸이클링
    • /
    • 제30권2호
    • /
    • pp.3-13
    • /
    • 2021
  • 니켈은 우수한 인성, 전성과 함께 내식성 향상 효과 때문에 널리 사용된다. 따라서 니켈은 우리 일상 생활에서 없어서는 안 될 금속으로, 스테인리스강, 고강도합금, 전자기기 등 기초부터 첨단 응용 분야까지 널리 사용되고 있다. 최근 니켈은 2차 전지 및 커패시터의 주요 소재로 널리 사용되고 있다. 니켈의 사용량은 계속 증가하여 1970년대 전 세계적으로 연간 80만 톤에서 2010년대에는 약 200만 톤으로 증가했다. 그러나, 니켈은 지각 중 원소 존재도에서 23번째로 대표적인 희소금속이다. 본 연구에서는 니켈 제련기술의 현황과 생산량 및 사용 동향에 대해 조사하였다. 니켈은 광석의 종류에 따라 매우 다양한 제련법으로 추출된다. 이러한 다양한 니켈 제련기술은 니켈 2차 자원으로부터 니켈을 추출하는 새로운 재활용 프로세스의 개발에 필수적일 것이다.

SiAlON Bulk Glasses and Their Role in Silicon Nitride Grain Boundaries: Composition-Structure-Property Relationships

  • Hampshire, Stuart;Pomeroy, Michael J.
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.301-307
    • /
    • 2012
  • SiAlON glasses are silicates or alumino-silicates, containing Mg, Ca, Y or rare earth (RE) ions as modifiers, in which nitrogen atoms substitute for oxygen atoms in the glass network. These glasses are found as intergranular films and at triple point junctions in silicon nitride ceramics and these grain boundary phases affect their fracture behaviour. This paper provides an overview of the preparation of M-SiAlON glasses and outlines the effects of composition on properties. As nitrogen substitutes for oxygen in SiAlON glasses, increases are observed in glass transition temperatures, viscosities, elastic moduli and microhardness. These property changes are compared with known effects of grain boundary glass chemistry in silicon nitride ceramics. Oxide sintering additives provide conditions for liquid phase sintering, reacting with surface silica on the $Si_3N_4$ particles and some of the nitride to form SiAlON liquid phases which on cooling remain as intergranular glasses. Thermal expansion mismatch between the grain boundary glass and the silicon nitride causes residual stresses in the material which can be determined from bulk SiAlON glass properties. The tensile residual stresses in the glass phase increase with increasing Y:Al ratio and this correlates with increasing fracture toughness as a result of easier debonding at the glass/${\beta}-Si_3N_4$ interface.

Effect of Phase Stability on the Microstructure Development of α-SiAlON Ceramics

  • Kim, Joosun;Lee, Hae-Weon;Chen, I-Wei
    • 한국분말재료학회지
    • /
    • 제10권2호
    • /
    • pp.118-122
    • /
    • 2003
  • Alpha-SiAlON ceramics having various compositions and modifying cations were investigated with respect to their phase stability, transformation kinetics. and resulting microstructures. Each composition was heat treated at 150$0^{\circ}C$ for 1h and measured the $\alpha$-SiAlON transformation. The phase-boundary composition in the single-phase $\alpha$-SiAlON region showed sluggish transformation from $\alpha$-$Si_3N_4$ to $\alpha$-SiAlON compared to the phase-center composition in the diagram. Using the different rare earth modifying cations, dependence of transformation kinetics on the phase stability in a fixed composition was also explained. By changing size of the stable u-phase region with exchanging cations, systematic change in transformation was observed. Transformation rate of $\alpha$-SiAlON at low temperature has an important role on controlling the final microstructure. Less transformation gives more chances to develop elongated grain in the microstructure.

($Eu^{2+}$, $Nd^{3+}$를 도핑시킨 $BaAl_{2}O_{4}$ 형광체의 광학 및 장잔광특성 (Optical and Long After-Glow Characteristics of $Eu^{2+}$, $Nd^{3+}$ doped $BaAl_{2}O_{4}$ Phosphorescent Crystals)

  • 김정환;김병규;이동규
    • 한국응용과학기술학회지
    • /
    • 제19권3호
    • /
    • pp.174-180
    • /
    • 2002
  • In recent days, the study of a new phosphorescent phosphor has been performed in order to overcome the defect of sulfide phosphor and increase the brightness and long after-glow characteristic of phosphorescent phosphor. Particularly, sulfide phosphor usually used is so chemically unstable that the study of oxide phosphors are processing. $Eu^{2+}$, $Nd^{3+}$ doped Ba-Al-O phosphors sintered at $600{\sim}1500^{\circ}C$ for 2hours had the PL emission spectrum and after-glow over $1200^{\circ}C$. In this system, as the mole concentration of alumina increases, emission bands of phosphors moved from 500nm to 380nm. The optimum concentration of flux was 5wt% and after-glow characteristics of phosphors were found at the host material molar ratio ($BaCO_{3}:Al_{2}O_{3}$), 1:1 and 1:3.

Accurate electronic structures for Ce doped SiAlON using a semilocal exchange-correlation potential

  • 유동수;정용재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.438-438
    • /
    • 2011
  • White light-emitting diodes (LEDs), the so-called next-generation solid-state lighting, offer benefits in terms of reliability, energy-saving, maintenance, safety, lead-free, and eco-friendly. Recently, rare-earth-doped oxynitride or nitride compounds have attracted a great deal of interest as a photoluminescent material because of their unique luminescent property, especially for white LEDs applications. Ce doped ${\beta}$-SiAlON has been studied as a wavelength conversion phosphor in white LEDs thanks to its high absorption rates, high quantum efficiency, and excellent thermal stability. Previously researches were not enough to understand the detail mechanism and characteristics of ${\beta}$-SiALON. The bandgap structures and electronic structures were not exact due to limitation of calculation methods. In this study, to elucidate the Ce doping effect on the SiAlON system, accurate band structures and electronic structure of the Ce doped ${\beta}$-SiAlON was intensively investigated using density functional theory calculations. In order to get a better description of the band gaps, MBJLDA method were used. We have found a single Ce atom site in ${\beta}$-SiAlON super cell. Furthermore, the density of state, band structure and lattice constant were intensively investigated.

  • PDF

An Overview of Self-Grown Nanostructured Electrode Materials in Electrochemical Supercapacitors

  • Shinde, Nanasaheb M.;Yun, Je Moon;Mane, Rajaram S.;Mathur, Sanjay;Kim, Kwang Ho
    • 한국세라믹학회지
    • /
    • 제55권5호
    • /
    • pp.407-418
    • /
    • 2018
  • Increasing demand for portable and wireless electronic devices with high power and energy densities has inspired global research to investigate, in lieu of scarce rare-earth and expensive ruthenium oxide-like materials, abundant, cheap, easily producible, and chemically stable electrode materials. Several potential electrode materials, including carbon-based materials, metal oxides, metal chalcogenides, layered metal double hydroxides, metal nitrides, metal phosphides, and metal chlorides with above requirements, have been effectively and efficiently applied in electrochemical supercapacitor energy storage devices. The synthesis of self-grown, or in-situ, nanostructured electrode materials using chemical processes is well-known, wherein the base material itself produces the required phase of the product with a unique morphology, high surface area, and moderate electrical conductivity. This comprehensive review provides in-depth information on the use of self-grown electrode materials of different morphologies in electrochemical supercapacitor applications. The present limitations and future prospects, from an industrial application perspectives, of self-grown electrode materials in enhancing energy storage capacity are briefly elaborated.

Near-IR Quantum Cutting Phosphors: A Step Towards Enhancing Solar Cell Efficiency

  • Jadhav, Abhijit P.;Khan, Sovann;Kim, Sun Jin;Cho, So-Hye
    • Applied Science and Convergence Technology
    • /
    • 제23권5호
    • /
    • pp.221-239
    • /
    • 2014
  • The global demand for energy has been increasing since past decades. Various technologies have been working to find a suitable alternative for the generation of sustainable energy. Photovoltaic technologies for solar energy conversion represent one of the significant routes for the green and renewable energy production. Despite of remarkable improvement in solar cell technologies, the generation of power is still suffering with lower energy conversion efficiency, high production cost, etc. The major problem in improving the PV efficiency is spectral mismatch between the incident solar spectrum and bandgap of a semiconductor material used in solar cell. Luminescent materials such as rare-earth doped phosphor materials having the quantum efficiency higher than unity can be helpful for photovoltaic applications. Quantum cutting phosphors are the most suitable candidates for the generation of two or more low-energy photons for the absorption of every incident high-energy photons. The phosphors which are capable of converting UV photon to visible and near-IR (NIR) photon are studied primarily for photovoltaic applications. In this review, we will survey various near IR quantum cutting phosphors with respective to their synthesis method, energy transfer mechanism, nature of activator, sensitizer and dopant materials incorporation and energy conversion efficiency considering their applications in photovoltaics.

Understanding spin configuration in the geometrically frustrated magnet TbB4: A resonant soft X-ray scattering study

  • Huang, H.;Jang, H.;Kang, B.Y.;Cho, B.K.;Kao, C.C.;Liu, Y.J.;Lee, J.S.
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1205-1211
    • /
    • 2018
  • The frustrated magnet has been regarded as a system that could be a promising host material for the quantum spin liquid (QSL). However, it is difficult to determine the spin configuration and the corresponding mechanism in this system, because of its geometrical frustration (i.e., crystal structure and symmetry). Herein, we systematically investigate one of the geometrically frustrated magnets, the $TbB_4$ compound. Using resonant soft x-ray scattering (RSXS), we explored its spin configuration, as well as Tb's quadrupole. Comprehensive evaluations of the temperature and photon energy/polarization dependences of the RSXS signals reveal the mechanism of spin reorientation upon cooling down, which is the sophisticated interplay between the Tb spin and the crystal symmetry rather than its orbit (quadrupole). Our results and their implications would further shed a light on the search for possible realization of QSL.

A Simplified Torque Ripple Reduction using the Current Shaping of the Flux Switched Reluctance Motor

  • Lee, Heon-Hyeong;Wang, Qi;Kim, Se-Joo;Choi, Woong-Chul;Lee, Geun-Ho
    • Journal of Magnetics
    • /
    • 제17권3호
    • /
    • pp.200-205
    • /
    • 2012
  • Recently, applications of the reluctance torque motor have been quite limited due to their inherent limitation of noise and vibration and thus, researches on the reluctance motor have been limited as well. However, with the tremendous increase in the cost of rare earth material magnets, studies of the reluctance torque motor are being conducted more and more. In principle, reluctance torque is generated when the inductance is changed. Therefore, in order to generate continuous torque in the switched reluctance motor, it is necessary to figure out the exact inductance level corresponding to the rotor position and the current level to be applied in that rotor position, respectively. If the current level or the rotor position is not accurately determined, then the generated reluctance torque becomes unstable and undesirable torque ripples prevail to eventually cause noise and vibrations. In this research, a flux switched reluctance motor (FSRM), which is classified into the switched reluctance motor (SRM), was studied. A methodology using the current shaping control according to the rotor position was proposed. Based on the proposed methodology, the optimal current waveform and the torque distribution function for the FSRM to minimize torque ripple was established and demonstrated in this paper.