• 제목/요약/키워드: RapidEye 위성영상

검색결과 30건 처리시간 0.02초

농림위성 활용 수종분류 가능성 평가를 위한 래피드아이 영상 기반 시험 분석 (A Study on Pre-evaluation of Tree Species Classification Possibility of CAS500-4 Using RapidEye Satellite Imageries)

  • 권수경;김경민;임중빈
    • 대한원격탐사학회지
    • /
    • 제37권2호
    • /
    • pp.291-304
    • /
    • 2021
  • 기후변화나 여러 환경문제들로부터 지속 가능한 산림자원 관리 및 모니터링을 위해 임상도의 지속적인 갱신은 필수적이다. 따라서 효율적이고 광역적인 산림 원격탐사의 필요성에 따라 차세대 중형위성 4호의 사업이 확정되어 2023년 발사 예정에 있다. 농림위성(차세대 중형위성 4호)는 5 m급 공간해상도와 Blue, Green, Red, Red Edge, Near Infra Red 총 5개 밴드를 가진다. 본 연구는 농림위성의 발사 및 활용에 앞서 농림위성과 유사한 사양을 가지는 RapidEye를 이용하여 위성 기반 수종분류의 가능성을 모의 평가하기 수행되었다. 본 연구는 춘천 선도산림경영단지를 연구 대상지로 하였으며, RapidEye 위성 영상기반 모의 수종분류는 생육기 영상으로부터 추출한 분광정보와 생육기와 비생육기의 NIR 밴드로부터 추출한 GLCM 질감특성 정보가 활용되었고, 이를 입력데이터로 하여 랜덤 포레스트(Random Forest) 기법을 적용하였다. 본 연구에서는 침엽수종 3종(소나무, 잣나무, 낙엽송), 활엽수종 5종(신갈나무, 굴참나무, 자작나무, 밤나무, 기타활엽수), 침활혼효림 총 9종으로 임상을 분류하였다. 분류 정확도는 임상도와 분류 결과를 대조하여 산출하였으며, 분류 정확도는 분광정보만 사용한 경우 39.41%, 분광정보과 질감정보를 모두 사용한 경우 69.29%의 정확도를 보였으며, 다중시기 분광정보 및 질감정보의 활용을 통해 5 m 해상도의 위성영상으로부터 수종분류의 가능성이 있음을 확인하였다. 향후 식생의 생태적 특성을 더욱 효과적으로 반영한 추가 변수를 대입하여 농림위성 활용 가능성을 제고하고자 한다.

RapidEye 위성영상과 구글 어스를 활용한 북한 DMZ의 산림현황 및 산림황폐지 변화 분석 (The Analysis of Changes in Forest Status and Deforestation of North Korea's DMZ Using RapidEye Satellite Imagery and Google Earth)

  • 권수경;김은희;임중빈;양아람
    • 한국지리정보학회지
    • /
    • 제24권4호
    • /
    • pp.113-126
    • /
    • 2021
  • 본 연구는 위성영상을 바탕으로 북한 DMZ의 산림현황을 분석하고 산림황폐지의 변화를 분석하기 위해 수행되었다. 생육기·비생육기 RapidEye 위성영상을 활용하여 북한 DMZ의 토지피복을 분류하였다. 토지피복을 입목지(침엽수림, 활엽수림, 혼효림), 산림황폐지(산간나지, 개간산지, 무립목지), 비산림지로 분류하고 산림 및 산림황폐지 면적을 생태지리구획에 따라 집계하였다. 연안-배천지구, 법동-평강지구, 회양-금강지구, 통천-고성지구의 산림황폐율은 14.24%, 16.75%, 5.98%, 16.63%로 각각 산출되었으며, 북한 DMZ 내 산림황폐화 주요 원인은 산불과 산지전용으로 판단되었다. 또한, 구글 어스 영상을 통해 산림황폐지 변화를 분석하였으며, 산림황폐지 면적은 감소하고 있는 것으로 확인되었다. 향후 본 연구 결과는 북한 DMZ의 산림공간정보를 제공함으로 써 남북접경지역의 산림협력 전략 수립을 위한 기초자료로 활용될 수 있을 것이다.

작물 모니터링을 위한 다중 센서 고해상도 위성영상의 시공간 융합 모델의 평가: Sentinel-2 및 RapidEye 영상 융합 실험 (Evaluation of Spatio-temporal Fusion Models of Multi-sensor High-resolution Satellite Images for Crop Monitoring: An Experiment on the Fusion of Sentinel-2 and RapidEye Images)

  • 박소연;김예슬;나상일;박노욱
    • 대한원격탐사학회지
    • /
    • 제36권5_1호
    • /
    • pp.807-821
    • /
    • 2020
  • 이 연구에서는 작물 모니터링을 위한 시계열 고해상도 영상 구축을 위해 기존 중저해상도 위성영상의 융합을 위해 개발된 대표적인 시공간 융합 모델의 적용성을 평가하였다. 특히 시공간 융합 모델의 원리를 고려하여 입력 영상 pair의 특성 차이에 따른 모델의 예측 성능을 비교하였다. 농경지에서 획득된 시계열 Sentinel-2 영상과 RapidEye 영상의 시공간 융합 실험을 통해 시공간 융합 모델의 예측 성능을 평가하였다. 시공간 융합 모델로는 Spatial and Temporal Adaptive Reflectance Fusion Model(STARFM), SParse-representation-based SpatioTemporal reflectance Fusion Model(SPSTFM)과 Flexible Spatiotemporal DAta Fusion(FSDAF) 모델을 적용하였다. 실험 결과, 세 시공간 융합 모델은 예측 오차와 공간 유사도 측면에서 서로 다른 예측 결과를 생성하였다. 그러나 모델 종류와 관계없이, 예측 시기와 영상 pair가 획득된 시기 사이의 시간 차이보다는 예측 시기의 저해상도 영상과 영상 pair의 상관성이 예측 능력 향상에 더 중요한 것으로 나타났다. 또한 작물 모니터링을 위해서는 오차 전파 문제를 완화할 수 있는 식생지수를 시공간 융합의 입력 자료로 사용해야 함을 확인하였다. 이러한 실험 결과는 작물 모니터링을 위한 시공간 융합에서 최적의 영상 pair 및 입력 자료 유형의 선택과 개선된 모델 개발의 기초정보로 활용될 수 있을 것으로 기대된다.

위성영상별 경지면적 분류 정확도 비교 분석 (Comparative Analysis of Classification Accuracy for Calculating Cropland Areas by using Satellite Images)

  • 조명희;김성재;김동영;최경숙
    • 한국농공학회논문집
    • /
    • 제54권2호
    • /
    • pp.47-53
    • /
    • 2012
  • Recently many developed countries have used satellite images for classifying cropland areas to reduce time and efforts put into field survey. Korea also has used satellite images for the same purpose since KOMPSAT-2 was successfully launched and operated in 2006, but still far way to go in order to achieve the required accuracy from the products. This study evaluated the accuracy of the calculated croplands by using the objected classification method with various satellite images including ASTER, Spot-5, Rapid eye, Quickbird-2, Geo eye-1. Also, their usability and effectiveness for the cropland survey were verified by comparing with field survey data. As results. Geo eye-1 and Rapid eye showed higher accuracy to calculate the paddy field areas while Geo eye-1 and Quickbird-2 showed higher accuracy to calculate the upland field areas.

입력 영상의 방사학적 불일치 보정이 다중 센서 고해상도 위성영상의 시공간 융합에 미치는 영향 (Effect of Correcting Radiometric Inconsistency between Input Images on Spatio-temporal Fusion of Multi-sensor High-resolution Satellite Images)

  • 박소연;나상일;박노욱
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.999-1011
    • /
    • 2021
  • 다중 센서 영상으로부터 공간 및 시간해상도가 모두 높은 영상을 예측하는 시공간 융합에서 다중 센서 영상의 방사학적 불일치는 예측 성능에 영향을 미칠 수 있다. 이 연구에서는 다중 센서 위성영상의 서로 다른 분광학적 특성을 보정하는 방사보정이 융합 결과에 미치는 영향을 분석하였다. 두 농경지에서 얻어진 Sentinel-2, PlanetScope 및 RapidEye 영상을 이용한 사례연구를 통해 상대 방사보정의 효과를 정량적으로 분석하였다. 사례연구 결과, 상대 방사보정을 적용한 다중 센서 영상을 사용하였을 때 융합의 예측 정확도가 향상되었다. 특히 입력 자료 간 상관성이 낮은 경우에 상대 방사보정에 의한 예측 정확도 향상이 두드러졌다. 분광 특성의 차이를 보이는 다중 센서 자료를 서로 유사하게 변환함으로써 예측 성능이 향상된 것으로 보인다. 이 결과를 통해 상대 방사보정은 상관성이 낮은 다중 센서 위성영상의 시공간 융합에서 예측 능력을 향상시키기 위해 필요할 것으로 판단된다.

시계열 위성영상을 이용한 북한 지역의 논벼 재배 지역 추출 기법 연구 (Extraction of paddy rice field in North Korea using time-series satellite images)

  • 이상현;최진용;오윤경;유승환;이성학;박나영
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.441-441
    • /
    • 2012
  • 본 연구의 목적은 북한지역에 적용할 수 있는 논벼 재배지역 추출 기법을 개발 및 적용하여 논 분포도를 작성하고, 정확도를 평가하는 것이다. 이를 위하여 북한에 적용 가능한 시계열 위성자료를 수집하고, 논벼 재배지역 추출을 위한 토지피복 분류 기법을 개발하여 북한의 논벼 재배지역 분포도를 작성하고자 한다. 최종적으로 작성된 논 분포도를 북한의 농경지 모니터링을 위한 기초 자료로 제공토록 한다. 본 연구에서는 시계열 NDVI를 적용한 객체기반 무감독 토지피복 분류 방법을 활용하여 북한의 황해남도 재령군을 대상으로 토지피복 분류와 논 지역을 추출을 수행하고자 하였다. 본 연구에서 활용한 영상은 RapieEye로서 5개의 위성이 지구를 관측하고 있기 때문에 매일 동일한 지역의 영상을 폭넓게 획득할 수 있다는 장점이 있으며, Red, Green, Blue, Near Infra Red 밴드 외에 Red Edge 밴드에서 데이터를 획득하여 산림 모니터링, 농작물 모니터링 등에 효과적으로 활용할 수 있다는 특징이 있다. 먼저 2010년 4월, 6월, 9월 영상으로 각 영상의 NDVI를 산정하고 이를 활용하여 객체를 생성하였다. 다음으로 생성된 객체를 바탕으로 무감독 토지피복 분류를 수행하였고, 논 적합지역에 대한 지형 정보를 분류결과에 반영하여 최종적인 토지피복지도 및 논 지역 지도를 구축하였다. 본 연구결과는 원격탐사분야의 응용 기술을 확장하고, 향후 북한지역의 농산물 생산량 파악과 농업수자원 평가 분야에서도 폭 넓게 활용될 것으로 판단된다.

  • PDF

고해상도 광학영상을 이용한 북한 함경북도 홍수 피해 분석 (Flood Damage Analysis Using High Resolution Satellite Image in North Korea)

  • 김용민;이수봉;김종필;김진영
    • 한국재난정보학회:학술대회논문집
    • /
    • 한국재난정보학회 2016년 정기학술대회
    • /
    • pp.364-365
    • /
    • 2016
  • 본 연구에서는 고해상도 위성영상을 이용하여 지난 8월 29일 북한 함경북도 지역에서 발생한 홍수에 의한 피해를 분석하였다. 북한은 접근이 불가능한 지리적 특성을 가지기 때문에 인공위성을 활용한 모니터링이 유일한 관측 수단이라고 할 수 있다. 북한측 발표내용에 의하면 이번 홍수로 인해 사망 130여명, 실종 400여명, 시설물 8,670동 등 대규모 피해가 발생하였으며, 이재민은 7만명이 넘는 것으로 나타났다. 위성영상을 이용하여 모든 피해지역을 파악하는 것은 한계가 있지만, 일부 지역의 피해분석을 통해 피해규모를 간접적으로 확인하는 것은 가능하다. 본 연구에서는 5m급 고해상도 위성영상인 플래닛스코프(PlanetScope), 래피드아이(RapidEye) 영상을 이용하여 회령, 송학, 남양, 종성 4개 지역의 홍수피해 전, 직후, 한 달 후의 변화를 분석하였다. 분석결과, 해당지역은 시설물 및 농경지 침수, 제방붕괴 등이 발생하였으며, 홍수로 인한 지형변화가 동반되었음이 확인되었다.

  • PDF

농촌지역 토지피복분류를 위한 객체기반 영상분석기법 연구 (A Study on Object-Based Image Analysis Methods for Land Cover Classification in Agricultural Areas)

  • 김현옥;염종민
    • 한국지리정보학회지
    • /
    • 제15권4호
    • /
    • pp.26-41
    • /
    • 2012
  • 지구온난화와 함께 홍수와 가뭄 등 기후변화에 대비하기 위해서는 경지현황에 대한 신속하고 정확한 정보를 바탕으로 농업생산량을 효율적으로 관리, 예측, 대비하는 것이 필요하다. 본 연구는 시 도 규모 이상의 넓은 지역을 대상으로 농촌지역 토지피복도 제작을 지원할 수 있는 영상분류 알고리즘 개발을 목표로 객체기반 영상분석기법의 활용가능성과 한계를 검토해 보았다. 추가적인 공간자료의 사용이 최소화된 상태에서 다중시기 RapidEye 위성영상의 분광정보 활용가능성을 테스트해 보고자 하였으며, 사례연구지인 김제지역 일대($1,300km^2$)에 대한 토지피복 분류 정확도는 80.3%로 양호하게 나타났다. 분석에 사용된 RapidEye의 6.5m 공간해상도는 대체로 작은 규모로 경작되는 우리나라 경지의 공간적 특성 추출이 가능하다는 것을 보여주었으며, 객체기반의 영상분석 기법은 분석가의 전문지식을 분류과정에서 다양한 방법으로 구현해냄으로써 영상정보 활용의 최적화를 꾀할 수 있음을 보여주었다. 또한, 기개발된 영상분류 알고리즘을 저장하고, 분석목적에 맞게 세부 변수들을 조정하여 다른 지역 또는 다른 영상에 응용할 수 있다는 장점이 있다. 하지만, 객체기반 영상분류의 근간이 되는 영상분할 과정은 정량적으로 명확히 설명되지 않는 경우가 많아 분석자의 경험과 전문지식을 바탕으로 최선의 결과를 도출하는 것이 요구된다.

고해상도 위성영상을 이용한 낙동강 유역의 클로로필-a 농도 추정 (Estimation of Chlorophyll-a Concentrations in the Nakdong River Using High-Resolution Satellite Image)

  • 최은영;이재운;이재관
    • 대한원격탐사학회지
    • /
    • 제27권5호
    • /
    • pp.613-623
    • /
    • 2011
  • 본 연구에서는 Moderate Imaging Spectroradiometer(MODIS), Sea-viewing Wide Field-fo-view Sensor(SeaWiFS), Medium Resolution Imaging Spectrometer(MERIS) 등의 광역관측 위성영상을 이용한 해수나 연안수의 클로로필 농도 분석을 통해 가능성이 확인되었던 밴드 비를 이용한 비교적 간단한 추정 모델을 수체의 크기와 폭이 현저히 작고 탁도가 있는 하천에 대해 클로로필-a 농도값을 추정하고자 고해상도 위성영상에 Two-band 및 Three-band reflectance 모델을 적용하여 가능성을 파악하였다. 특히 RapidEye 영상을 이용하여 일반적으로 탁도가 있는 수체에 대해 Red와 NIR 영역을 활용하는 이들 모델에 Red-edge(RE) 밴드를 적용하였다. Red와 NIR을 이용한 Two-band Reflectance 모델은 계산식의 결정계수 $R^2$ 값이 0.38로 유의성 없는 결과를 나타내었다. 그러나 RapidEye의 Red-edge (RE) 파장 대를 이용한 Red-RE Two-band 모델과 Red-RE-NIR Three-band 모델을 이용한 계산식에 대해서는, 2차함수에 의한 Three-band 모델의 결과는 Red-RE Two-band 모델의 결과와 통계적인 값이 거의 유사하였고 Two-band와 3차함수에 의한 Three-band 모델 추정식은 각각 0.66, 0.73 의 $R^2$값을 나타내어 Red-edge 밴드의 적용 가능성을 보였고, 실측치와의 Root Mean Square Error (RMSE)는 24.8, 22.4 mg $m^{-3}$, Relative Percent Difference(RPD)는 각각 1.30, 1.29로 1.5 이하의 대략적인 추정(Approximate Prediction) 수준을 나타내었다. 고해상도 위성영상에 Red-RE-NIR Three-band 모델을 적용한 계산식을 이용해 대략적인 추정이지만 가장 유의한 수준의 클로로필-a 농도를 추정할 수 있었다. 영상에서 추정된 클로로필-a 분포를 비교하였을 때 3차함수에 의한 Three-band 모델 추정식이 Two-band 모델에 비해 낮은 값의 분포를 보였다. 향후 하천의 스펙트럼을 실측하여 파장별 부유물질, 유기물과의 상관성 및 클로로필 농도와의 간섭 정도를 시뮬레이션하여 보정식을 산출 적용한다면 탁도가 다소 높은 하천에서의 클로로필-a 농도 계산식의 정확도를 더욱 높일 수 있을 것으로 기대된다.

농림위성영상 정밀센서모델링 효율성 재고를 위한 최적의 해상도 및 지상기준점 칩 개수 분석 (Analysis of Optimal Resolution and Number of GCP Chips for Precision Sensor Modeling Efficiency in Satellite Images)

  • 최현경;김태정
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1445-1462
    • /
    • 2022
  • 2025년도 발사예정인 농림위성은 광역농림상황관측용도로 개발된 5 m급 해상도를 갖는 중해상도 위성이다. 위성영상 활용을 위해서는 위성영상에 대한 정밀센서모델을 수립하여 정확한 기하정보를 수립하는 것이 중요하다. 선행 연구에서 지상기준점 칩과 위성영상을 정합하는 과정을 통해 자동으로 정밀센서모델을 수립할 수 있음을 보고하였다. 따라서 위성영상의 기하정확도를 향상시키기 위해서는 지상기준점 칩 정합 성능을 향상시켜야 한다. 이 논문은 중해상도 위성영상의 센서모델 정확도 향상을 위한 지상기준점 칩 정합 개선방안을 제안한다. 고해상도 지상기준점 칩을 중해상도 위성영상 정밀센서모델링을 위해 사용할 경우의 중요한 기술요소는 상이한 공간해상도 처리방식과 최적 지상기준점 수량결정이다. 본 연구에서는 이러한 기술요소를 해결하기 위해 중해상도 위성영상과 지상기준점 칩 정합 시, 위성영상 업샘플링(upsampling) 배율과 사용한 칩 개수에 따른 칩 정합 성능을 비교 분석하였다. 실험에는 해상도가 5 m인 RapidEye 영상을 중해상도 위성영상으로 사용하였으며, 해상도가 0.25 m인 항공정사영상과 0.5 m인 위성정사영상을 지상기준점 칩으로 제작하여 사용하였다. 정확도 분석은 수동으로 추출한 기준점을 사용하여 수행되었다. 실험결과, 업샘플링 배율 2 내지 3에서 정확도가 크게 향상되었으며 지상기준점 수량은 대략 100개인 경우 정확도가 유지되었다. 이러한 결과로부터 중해상도 위성의 정밀센서모델 수립에 고해상도 지상기준점 칩 적용 가능성을 확인할 수 있었고, 기존보다 향상된 정확도의 정밀센서모델이 수립됨을 확인하였다. 본 연구결과가 향후 농림위성에 활용될 수 있을 것으로 기대한다.