• 제목/요약/키워드: Rapid prototyping process selection

검색결과 9건 처리시간 0.023초

쾌속조형장비 선정을 위한 전문가시스템 개발 (Development of an Expert System for Rapid Prototyping Machine Selection)

  • 정일용;이일랑;최병욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.632-635
    • /
    • 2002
  • There are more than five dozen different RP(rapid prototyping) systems in the world and they are fairly expensive. All those systems have different capabilities and requirements in that each of them gives different tolerance, application field and part strength, etc. This situation may cause a problem of selecting an appropriate RP system. This paper presents an expert system, utilizing an algorithm that is composed up of rules to derive recommendations and answers to queries of the RP users. The expert system incorporates RP machines commercially available and adopts multi-selection criteria, namely, machine price, accuracy, build size, adopted process, etc. In the expert system, forward reasoning method is adopted and external spreadsheet for sub-data of the RP systems is used. The rules and knowledge are obtained from interviews and discussions with RP vendors and users, appropriate research publications and other reference materials.

  • PDF

3차원 조형장비 선정을 위한 복합 다요소 의사결정 구조 모델 개발에 관한 연구 (A decision making framework model for the selection of a RP using hybrid multiple attribute decision making techniques)

  • 변홍석
    • 한국기계가공학회지
    • /
    • 제7권3호
    • /
    • pp.87-95
    • /
    • 2008
  • The purpose of this study is to provide a decision support to select an appropriate rapid prototyping(RP) machine that suits the application of a part. Selection factors include concept model, form/fit/functional model, pattern model for molding, material property, build time and part cost that greatly affect the performance of RP machines. However, the selection of a RP is not an easy decision because they are uncertain and vague. For this reason, the aim of this research is to propose hybrid multiple attribute decision making approaches to effectively evaluate RP machines. In addition, because subjective considerations are relevant to selection decision, a fuzzy logic approach is adopted. The proposed selection procedure consists of several steps. First, we identify RP machines that the users consider. After constructing the evaluation criteria, we calculate the weights of the criteria by applying the fuzzy Analytic Hierarchy Process(AHP) method. Finally, we construct the fuzzy Technique of Order Preference by Similarity to Ideal Solution(TOPSIS) method to achieve the ranking order of all machines providing the decision information for the selection of RP machines.

  • PDF

쾌속조형공정 선정을 위한 지원 시스템 (A Decision Support System for the Selection of a Rapid Prototyping Process)

  • 변홍석;이관행
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.5-8
    • /
    • 2003
  • This paper presents a methodology to be able to select an appropriate RP system that suits the end use of a part. Evaluation factors used in process selection include major attributes such as accuracy, roughness, strength, elongation, part cost and build time that greatly affect the performance of RP systems. Crisp values such as accuracy and surface roughness are obtained with a new test part developed. The test part is designed with conjoint analysis to reflect users' preference. The part cost and build time that have approximate ranges due to cost and many variable parameters are presented by linguistic values that can be described with triangular fuzzy numbers. Based on the evaluation values obtained, an appropriate RP process for a specific part application is selected by using the modified TOPSIS(Technique of Order Preference by Similarity to Ideal Solution) method. It uses crisp data as well as linguistic variables, and each weight on the alternatives is assigned by using pair-wise comparison matrix. The ranking order helps the decision making of the selection of RP systems.

  • PDF

쾌속조형 공정 및 장비 선정을 위한 의사결정지원 알고리즘 개발 (Development of Decision-Support Algorithms to Select RP Process and Machine)

  • 최병욱;정일용;이일랑;김태범;금영탁
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.22-25
    • /
    • 2003
  • It is usually difficult for a single user to have all the essential knowledge on various Rapid Prototyping processes and techniques. It is therefore necessary to capture knowledge and experience of users of expert level into a decision-support system which provides quicker and more interactive way to select proper RP process and/or machine. rather than reading reports on benchmarking studies and comparing tables and graphs. In this paper two algorithms are presented, which may be used in such a decision-support system. together with its applications. The one is an extended PRES(Project Evaluation and Selection) algorithm which applies weighting factors of each attribute. The other is a LCE(Linear Confidence Equation) algorithm which is proposed to apply user's input requirements as well as weighting factors.

  • PDF

Rapid Prototyping and Reverse Engineering Application for Orthopedic Surgery Planning

  • Ahn Dong-Gyu;Lee Jun-Young;Yang Dong-Yol
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.19-28
    • /
    • 2006
  • This paper describes rapid prototyping (RP) and reverse engineering (RE) application for orthopedic surgery planning to improve the efficiency and accuracy of the orthopedic surgery. Using the symmetrical characteristics of the human body, CAD data of undamaged bone of the injured area are generated from a mirror transformation of undamaged bone data for the uninjured area. The physical model before the injury is manufactured from Poly jet RP process. The surgical plan, including the selection of the proper implant, pre-forming of the implant and decision of fixation positions, etc., is determined by a physical simulation using the physical model. In order to examine the applicability and efficiency of the surgical planning technology, two case studies, such as a distal tibia comminuted fracture and an iliac wing fracture of pelvis, are carried out. From the results of the examination, it has been shown that the RP and RE can be applied to orthopedic surgical planning and can be an efficient surgical tool.

부품방향의 선정을 통한 광조형물의 후가공면적 최소화 (Minimization of Post-processing area for Stereolithography Parts by Selection of Part Orientation)

  • 김호찬;이석희
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2409-2414
    • /
    • 2002
  • The surfaces of prototypes become rough due to the stair-stepping which is the inevitable phenomenon in the Rapid Prototypes are not used only for the verification of feature. The grinding, coating, or the composition of them is a main operation in post-processing in which lots of costs and long build time are needed. The solution is proposed to increase the efficiency of rapid prototyping by minimizing or removing the composition of them is a main operation in post-processing in which lots of costs and long build time are needed. the solution is proposed to increase the efficiency of rapid prototyping by minimizing or removing the regions for post-processing. the factors to cause the surface roughness and their effects are analyzed through the experiments. Software modules are developed to predict the surface roughness of each face in the prototyping with the result. An experimental compensation method is developed to apply the modules to various RP equipments, materials and build styles. The build direction is searched with use of genetic algorithm to maximize the total areas of the surface of which roughness is better than the user-defined value.

Liquid metal을 이용한 고속 양면 가공 및 라틴 방격법에 의한 최적 가공 조건 선정 (High Speed Machining of the thin surface parts using liquid metal and selection of machining condition by Latin Square Method)

  • 임표;이희관;양균의
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.433-438
    • /
    • 2004
  • The rapid machining of prototypes plays an important role in product process. Rapid Prototyping(RP) is the widespread technology to produce prototype. But, it have many problems such as shrinkage, deformation and formation occurred by hardening of resin and stair shaping, On the contrary, high speed machining(HSM) technology has many advantages such as good quality, low cost and rapid machining time. Moreover, it is possible to use the material of original product. This paper presents manufacture of trial product by HSM and optimization of machining condition for high productivity in the view of manufacturing time and average error. For example, propeller is machined by the surface machining of thin surface parts. Experiments are designed of machining conditions by Latin Square method and machining condition is optimized and selected by ANOVA

  • PDF

광조형물의 표면 거칠기 저감을 위한 성형방향의 선정 (Selection of Build Orientation for Reducing Surface Roughness with Stereolithography Parts)

  • 안대건;김호찬;이석희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.137-140
    • /
    • 1997
  • In general, stereolithography parts is not suitable for master pattern. Because of its bad surface roughness. Therefore, To reduce roughness it requires post-process that is depending on user skill and takes long time to do. This study aims to develop an expert system which can select an optimal build orientation, reduce roughness and shorten post-processing time. Genetic Algorithm was introduced for optimization. A simplified computation model was developed for real-time response. For accurate roughness estimation, mterpolation of experimental data was implemented.

  • PDF

쾌속 조형 공정의 성능 평가 및 선정에 관한 연구 (A study on capability evaluation and machine selection in RP processes)

  • 신행재;변홍석;이관행
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.37-40
    • /
    • 2001
  • This paper describes the selection and evaluation of RP processes. Major rapid prototyping processes such as SLS, SLA, FDM and LOM, which are wide spread in use are selected. A test part, which includes various primitives, is designed in order to evaluate these RP processes. Measurement of the test part is automated by using a CMN program. To visualize and analyze measured data, Microsoft Access and Visual C++ are used. Also, from measured data obtained, TOPSIS, one of the decision making methods, and Shannon Entropy is used to select an appropriate RP process for specific application.

  • PDF