• 제목/요약/키워드: Rapid misclassification sample

검색결과 1건 처리시간 0.017초

딥뉴럴네트워크 상에 신속한 오인식 샘플 생성 공격 (Rapid Misclassification Sample Generation Attack on Deep Neural Network)

  • 권현;박상준;김용철
    • 융합보안논문지
    • /
    • 제20권2호
    • /
    • pp.111-121
    • /
    • 2020
  • 딥뉴럴네트워크는 머신러닝 분야 중 이미지 인식, 사물 인식 등에 좋은 성능을 보여주고 있다. 그러나 딥뉴럴네트워크는 적대적 샘플(Adversarial example)에 취약점이 있다. 적대적 샘플은 원본 샘플에 최소한의 noise를 넣어서 딥뉴럴네트워크가 잘못 인식하게 하는 샘플이다. 그러나 이러한 적대적 샘플은 원본 샘플간의 최소한의 noise을 주면서 동시에 딥뉴럴네트워크가 잘못 인식하도록 하는 샘플을 생성하는 데 시간이 많이 걸린다는 단점이 있다. 따라서 어떠한 경우에 최소한의 noise가 아니더라도 신속하게 딥뉴럴네트워크가 잘못 인식하도록 하는 공격이 필요할 수 있다. 이 논문에서, 우리는 신속하게 딥뉴럴네트워크를 공격하는 것에 우선순위를 둔 신속한 오인식 샘플 생성 공격을 제안하고자 한다. 이 제안방법은 원본 샘플에 대한 왜곡을 고려하지 않고 딥뉴럴네트워크의 오인식에 중점을 둔 noise를 추가하는 방식이다. 따라서 이 방법은 기존방법과 달리 별도의 원본 샘플에 대한 왜곡을 고려하지 않기 때문에 기존방법보다 생성속도가 빠른 장점이 있다. 실험데이터로는 MNIST와 CIFAR10를 사용하였으며 머신러닝 라이브러리로 Tensorflow를 사용하였다. 실험결과에서, 제안한 오인식 샘플은 기존방법에 비해서 MNIST와 CIFAR10에서 각각 50%, 80% 감소된 반복횟수이면서 100% 공격률을 가진다.