• Title/Summary/Keyword: Rapid manufacturing

Search Result 824, Processing Time 0.036 seconds

Investigation into Development of Transfer Type for Variable Lamination Manufacturing Process and Apparatus (단속형 재료 공급식 가변 적층 쾌속조형공정 및 장치 개발에 관한 연구)

  • Yang, Dong-Yol;Ahn, Dong-Gyu;Lee, Sang-Ho;Choi, Hong-Seok;Park, Seung-Kyo;Chae, Hee-Chang
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.760-765
    • /
    • 2001
  • A new rapid prototyping process, as a transfer type of Variable Lamination Manufacturing by using expandable polystyrene foam (VLM-ST), has been developed to reduce building time, apparatus cost including the introduction and the maintenance and additional post-processing. The objective of this study is to propose a VLM-ST process and to develop an apparatus for implementation of the process. Design criteria of the apparatus were defined and the techniques were proposed to satisfy the design criterion. In order to examine the efficiency and applicability of the developed process, various three-dimensional shapes, such as a world-cup logo, a knob shape and a character, Son-o-kong, were fabricated on the apparatus in which unit shape layer (USL) was generated to build up each layer.

  • PDF

Investigation of Thermal Characteristics and Skeleton Size Effects to improve Dimensional Accuracy of Variable Lamination Manufacturing by using EPS Foam (발포 폴리스티렌 폼을 이용한 가변적층 쾌속조형공정의 형상 정밀도 개선을 위한 열전달 특성 및 잔여 재료폭 영향에 관한 연구)

  • 안동규;이상호;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.910-913
    • /
    • 2001
  • Rapid Prototyping(RP) techniques have unique characteristics according to their working principle: the stair-stepped surface of a part due to layer-by-layer stacking, low building speed, and additional post-processing to improve surface roughness. A new RP process, Variable Lamination Manufacturing by using expandable polystyrene foam(VLM-S), has been developed to overcome the unfavorable characteristics. The objective of this study is to investigate the thermal characteristics and skeleton size effects as the hotwire cuts EPS foam sheet in order to improve dimensional accuracy of the parts, which is produced by VLM-S. Empirical and analytical approaches are performed to find the relationship between cutting speed and heat input, and the relationship between maximum available cutting speed and heat input. In addition, empirical approaches are carried out to find the relationship between cutting error and skeleton size, and cutting deviation and skeleton size. Based on these results, the optimal hotwire cutting condition and available minimum skeleton size are derived. The outcomes of this study are reflecting in the enhancement of VLM-S input data generation S/W.

  • PDF

Rapid Manufacturing of Large Object by Splitting Solid Model in VLM-ST (VLM-ST 공정에서 입체 절단을 이용한 대형 물체의 쾌속 제작)

  • 이상호;안동규;김효찬;양동열;채희창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.50-53
    • /
    • 2003
  • Most companies use technologies such as stereolithography, selective laser sintering, and fused deposition modeling to make parts for such small consumer products as telephones, heads, and shoes. The largest part that the existing RP systems can make is only 600 mm in length. Because most RP systems build parts by depositing, solidifying, or sintering material point-by-point, making larger objects takes a long time. and in many cases, large objects won't fit the build size. A new effective thick-layered RP process. Transfer type Variable Lamination Manufacturing using expandable polystyrene foam (VLM-ST) has been developed with thick layers and sloped surfaces. In this paper, a scaledown model of F16 Fighter with the length of 800 mm is rapidly fabricated using the VLM-ST process. In order to build a CAD model of F16 larger than 600 mm in length, the approach in VLM-ST is to build larger parts in multiple sub-parts and then glue them together. The fabricated result shows that the VLM-ST process employing thick layers and sloped surfaces is adequate for creating the real-sized large objects in the diverse fields such as automobiles, electric home appliances, electronics. and etc.

  • PDF

Generation of cutting Path Data for Fully Automated Transfer-type Variable Lamination Manufacturing Using EPS-Foam (완전 자동화된 단속형 가변적층쾌속조형공정을 위한 절단 경로 데이터 생성)

  • 이상호;안동규;김효찬;양동열;박두섭;심용보;채희창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.599-602
    • /
    • 2002
  • A novel rapid prototyping (RP) process, an automated transfer type variable lamination manufacturing process (Automated VLM-ST) has been developed. In Automated VLM-ST, a vacuum chuck and linear moving system transfer the plate type material with two pilot holes to the rotation stage. A four-axis synchronized hotwire cutter cuts the material twice to generate Automated Unit Shape Layer (AUSL) with the desired width, side slopes, length, and two reference shapes in accordance with CAD data. Each AUSL is stacked on the stacking plate with two pilot pins using the pilot holes in AUSL and the pilot pins. Subsequently, adhesive is supplied to the top surface of the stacked AUSL by a bonding roller and pressure is simultaneously applied to the bottom surface of the stacked AUSL. Finally, three-dimensional shapes are rapidly fabricated. This paper describes the procedure for generating the cutting path data (AUSL data) f3r automated VLM-ST. The method for the generation of the Automated Unit Shape Layer (AUSL) in Automated VLM-ST was practically applied and fabricated for a various shapes.

  • PDF

The Influence of Experiment Variables on DLP 3D Printing using ART Resin (ART 수지의 DLP 3D Printing 가공 시 실험변수의 영향)

  • Shin, Geun-Sik;Kweon, Hyun-Kyu;Kang, Yong-Goo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.101-108
    • /
    • 2017
  • Recently, the patent rights for 3D printing technology have expired, while 3D printers with RP (Rapid Prototyping or Additive Manufacturing) and 3D printing technologies are receiving attention. In particular, the development of 3D printers is rapid in Korea, thanks to the increasing sales and popularity of FDM (Fused Deposition Modeling or Fused Filament Fabrication) 3D printers. However, the quality and productivity of the FDM 3D Printer are not good, so customers prefer the DLP (Digital Light Processing) method to avoid these shortcomings. The DLP method has high quality and productivity. However, because of the stereolithography equipment, it has few studies compared to optimal values for elements then FDM 3D printing study. In this study, to find the optimal conditions for 3D printing with the DLP method, the aim is to obtain the optimal values (strength, final time, quality) by changing the light exposure time, layer thickness, and z-axis speed.

A Study of Design for Hot Tool to Minimize Radius of Heat Affected Zone in Rapid Heat Ablation process (쾌속 열용삭 공정에서 열반경 최소화를 위한 열 공구 설계에 관한 연구)

  • Kim H.C.;Lee S.H.;Song M.S.;Yang D.Y.;Park S.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.743-748
    • /
    • 2005
  • In order to realize a three-dimensional shape on CAD, the machining process has been widely used because it offers practical advantages such as precision and versatility. However, the traditional machining process needs a large amount of time in cutting a product and the remained material causes trouble such as inconvenience for clarity. Therefore, a new rapid manufacturing process using the hot tool, Rapid Heat Ablation process (RHA), has been developed. In this paper, the hot tool for RHA process is devised to minimize radius of heat affected zone and also investigated for verification. TRIZ well-known as creative problem solving method is applied to overcome the contradictive requirements of the hot tool. For the detailed design of the hot tool, numerical model is established with several assumptions. Based on the numerical results, surface temperature is measured with K-type thermocouple at the predetermined location. Numerical and experimental results show that the devised hot tool fulfils its requirements. It verifies the practicality of hot tool that the hemisphere shape is ablated using the hot tool with stair structure.

  • PDF

RPD framework fabrication using computer-aided design (CAD) and rapid prototyping (Computer-aided design (CAD) 및 쾌속조형술을 이용한 가철성 국소의치 수복 증례)

  • Park, Seon-Ah;Koak, Jai-Young;Heo, Seong-Joo;Kim, Seong-Kyun;Park, Ji-Man
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.1
    • /
    • pp.94-99
    • /
    • 2017
  • Nowadays, digital dentistry is generally applied to prosthodontics with fabrication of inlays or any other fixed prostheses by utilizing CAD/CAM (computer-aided design/computer-aided manufacturing) technology and intraoral scanner. However, in fabricating removable prosthesis, there are some limitations for digital technology to substitute conventional casting method. Therefore, approaching removable prostheses fabrication with CAD/CAM technology would be a meaningful trial. In this case report, Kennedy class III mandibular edentulous patient who was in need of increasing the vertical dimension of occlusion was treated with removable partial denture using CAD and rapid prototyping technique. Surveying and designing the metal framework of the partial denture was performed with CAD, and sacrificial plastic pattern was fabricated with rapid prototyping technique. During the follow up period of nine months, the removable partial denture has provided satisfactory results in esthetics and function.