• 제목/요약/키워드: Rapid cooling

검색결과 413건 처리시간 0.027초

급냉응고 시킨 Al-Pb 합금의 응고조직에 관한 연구 (A Study on the Solidified Structures of Al-Pb Alloy Solidified by Rapid Cooling)

  • 김용길;김동훈
    • 한국주조공학회지
    • /
    • 제2권1호
    • /
    • pp.12-18
    • /
    • 1982
  • The present investigation was made to abtain a fine distribution of Pb Particles in AL - Pb binary alloys , which have a broad miscibility gap and large specific difference, by means of rapid Cooling of the molten alloys. Al-2.4% Pb, Al-5.5wt% Pb and Al-8.0wt % Pb alloy were used. The rapid cooling operation was performed by free falling of homogeneous liquid Al-Ph alloys into the water-cooled copper mold, and thermal analysis was made. Microstructures were observed, and variations of size and number of Pb particles were analysicle analyzer. By the result of examination with the varing cooling rates 100 to $210^{\circ}C/sec$ fine distributions of Pb particles were obtained with high cooling rate. Under same cooling condition, the best rapid cooling effect was recognized in Al-5.5wt% Pb alloy.

  • PDF

전화기 케이스 외관의 Weldline 제거를 위한 금형 급속 가열-냉각 기술 개발 (Development of rapid mold heating & cooling technology to remove weldline on surface appearance in telephone case)

  • 차백순;박형필;이상용;김옥래;이승욱;이병옥
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.439-443
    • /
    • 2008
  • Painting process or coating with acrylic film may improve the surface defects of injection molded parts deteriorated by weldlines. flow marks. and etc. However such processes increase the production costs and increase environmental problems. Recently various types of rapid mold heating & cooling technology have been developed in order to improve surface quality of products. In this study. the heating & cooling performance of a telephone case mold is investigated by heat transfer analysis, in which the rapid mold heating & reeling technology is applied. The surface temperature of the mold was measured using thermal image camera and compared with analysis results. The influence of the rapid mold heating & cooling technology on weldline appearance and cycle time increase was also examined.

  • PDF

펠티에 소자를 이용한 급속 냉각시스템의 개발 (Development of Rapid Cooling System using Peltier Device)

  • 장민규;이규호;노건철;정영득
    • 동력기계공학회지
    • /
    • 제13권4호
    • /
    • pp.38-42
    • /
    • 2009
  • The Injection molding is used more than 70% of total production in plastic products. The injection molding process has 4 processes such as filling, packing, cooling and ejecting. now then, cooling process spends the most of times in Injection molding cycle time. Therefore, it is important to control the mold temperature in producing plastic products. The cooling system and time affect the product's quality and productivity. Especially, cooling time has about 60% of total injection cycle time. Therefore, we can improve a productivity by shortening cooling time. In this study, the rapid cooling system was developed and performed a efficiency test. This system could refrigerate coolant to $1^{\circ}C$ and had to need 10 minutes for normal operating.

  • PDF

사출금형의 급속냉각시스템 개발 (Development of Rapid Cooling System for Injection Mold)

  • 문영배;최윤식;정영득
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.111-114
    • /
    • 2008
  • The Injection molding is used more than 70% of total production in plastic products. The injection molding process has 4 processes such as filling, packing, cooling and ejecting. It spends most of times in the cooling process. Therefore, it is important to control the mold temperature in producing plastic products. The cooling system and time affect the product's quality and productivity. Especially, cooling time has about 60% of total injection cycle time. Therefore, we can improve a productivity by shortening cooling time. In this study, the rapid cooling system was developed and performed a efficiency test. This system could refrigerate coolant to $1^{\circ}C$ and had to need 10 minutes for normal operating. However, if response time of temperature controller and sensor will be increased, the performance of this system will increase.

  • PDF

고속 냉각 특성을 가진 사출성형 금형 코어 제작 및 사출 성형 (Fabrication of Cores for the Injection Mould with a High Cooling Rate and Injection Molding Using the Fabricated Core)

  • 안동규
    • 소성∙가공
    • /
    • 제16권7호
    • /
    • pp.549-554
    • /
    • 2007
  • The objective of this paper is to investigate into the fabrication technology of cores for the injection mould with three-dimensional conformal cooling channels to reduce the cooling time. The location of the conformal cooling channels has been determined through the injection molding analysis. The mould has been manufactured from a hybrid rapid tooling technology, which is combined a direct metal rapid tooling with a machining process. Several injection molding experiments have been performed to examine the productivity and the validity of the designed mould. From the results of the experiments, it has been shown that the proposed mould can mold a final product within a cooling time of 3 seconds and a cycle time of 21 seconds, respectively.

냉매 저장방식에 의한 쾌속 냉각장치에 대한 실험적 연구 (Experimental Study on the Rapid Cooling System by Refrigerant Storage Method)

  • 장기태;고준석;정상권
    • 설비공학논문집
    • /
    • 제15권11호
    • /
    • pp.937-942
    • /
    • 2003
  • In the present study, low-temperature low-pressure refrigerant storage method is proposed to achieve higher cooling capacity during a short period of time than that of a compressor in steady operation. Experimental apparatus was designed and set up to analyze the performance of the new-conceptual cooling system. Two reservoirs for sequential storage of refrigerant were used in the cooling system. Several on/off solenoid valves were installed for control of refrigerant flow. From the experimental results, the initial rapid cooling by low temperature low-pressure refrigerant storage method was ascertained for successful operation. This rapid cooling methodology shall be useful for other low-capacity refrigeration system.

고주파 유도가열을 사용한 급속 금형가열에 관한 연구 (A Study on Rapid Mold Heating System using High-Frequency Induction Heating)

  • 정희택;윤재호;박근;권오경
    • 대한기계학회논문집A
    • /
    • 제31권5호
    • /
    • pp.594-600
    • /
    • 2007
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat a conductive workpiece by means of high-frequency electric current caused by electromagnetic induction. Because the induction heating is a convenient and efficient way of indirect heating, it has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers an experimental investigation on the rapid heating using the induction heating and rapid cooling using a vortex tube in order to eliminate an excessive cycle time increase. Experiments are performed in the case of a steel cup mold core with various heating and cooling conditions. Temperature is measured during heating and cooling time, from which appropriate mold heating and cooling conditions can be obtained.

Evolution of dynamic mechanical properties of heated granite subjected to rapid cooling

  • Yin, Tubing;Zhang, Shuaishuai;Li, Xibing;Bai, Lv
    • Geomechanics and Engineering
    • /
    • 제16권5호
    • /
    • pp.483-493
    • /
    • 2018
  • Experimental study of the deterioration of high-temperature rock subjected to rapid cooling is essential for thermal engineering applications. To evaluate the influence of thermal shock on heated granite with different temperatures, laboratory tests were conducted to record the changes in the physical properties of granite specimens and the dynamic mechanical characteristics of granite after rapid cooling were experimentally investigated by using a split Hopkinson pressure bar (SHPB). The results indicate that there are threshold temperatures ($500-600^{\circ}C$) for variations in density, porosity, and P-wave velocity of granite with increasing treatment temperature. The stress-strain curves of $500-1000^{\circ}C$ show the brittle-plastic transition of tested granite specimens. It was also found that in the temperature range of $200-400^{\circ}C$, the through-cracks induced by rapid cooling have a decisive influence on the failure pattern of rock specimens under dynamic load. Moreover, the increase of crack density due to higher treatment temperature will result in the dilution of thermal shock effect for the rocks at temperatures above $500^{\circ}C$. Eventually, a fitting formula was established to relate the dynamic peak strength of pretreated granite to the crack density, which is the exponential function.

Hybrid 쾌속생산공정을 이용한 고생산성 사출성형 금형 개발에 관한 연구 (A study on the development of injection mould with a high productivity using hybrid rapid manufacturing technologies)

  • 안동규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1243-1248
    • /
    • 2007
  • In recent, rapid manufacturing (RM) technology is widely used to develop an injection mould with a high performance. The objective of this paper is to develop the injection mould with a high productivity using a hybrid RM technology combining Laser-aided Direct Metal Tooling process with a machining process. The geometry decomposition has been utilized to improve the speed of the manufacturing for the mould. Mould with conformal cooling channels has been designed to improve cooling characteristics. Several experiments have been carried out to evaluate characteristics of the mould manufactured from the hybrid RM technology. In addition, injection molding tests have been performed to examine the performance of the manufactured mould. The results of the injection molding tests have been shown that a cooling time and the injection time of the designed mould are reduced to one-fifth and one-second that of the mould with convention cooling channels.

  • PDF

사출금형의 급속냉각시스템 개발 (Development of Rapid Cooling System for Injection Mold)

  • 문영배;최윤식;정영득
    • Design & Manufacturing
    • /
    • 제8권1호
    • /
    • pp.31-34
    • /
    • 2014
  • The Injection molding is used more than 70% of total production in plastic products. The injection molding process has 4 processes such as filling, packing, cooling and ejecting. It spends most of times in the cooling process. Therefore, it is important to control the mold temperature in producing plastic products. The cooling system and time affect the product's quality and productivity. Especially, cooling time has about 60% of total injection cycle time. Therefore, we can improve a productivity by shortening cooling time. In this study, the rapid cooling system was developed and performed a efficiency test. This system could refrigerate coolant to $1^{\circ}C$ and had to need 10 minutes for normal operating. However, if response time of temperature controller and sensor will be increased, the performance of this system will increase.

  • PDF