• Title/Summary/Keyword: Rapid Prototyping Technology

Search Result 219, Processing Time 0.027 seconds

Rapid Product Fabrication using Wire Welding with $CO_2$ Laser Irradiation and Milling Process Technology (레이저 용접공정과 밀링공정에 의한 쾌속 금속 시작품 제작)

  • 최두선;신보성;윤경구;황경현;박진용;이종현;송용억;박세형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.763-766
    • /
    • 2000
  • The Rapid Prototyping and Tooling technology has been developed. However, most commercial ones currently use resins or waxes as the raw materials. These days. the direct metal deposition methods are researched as a true rapid prototyping and tooling technology. A fundamental study on rapid prototyping and tooling with wire welding technology using $CO_2$ laser radiation was carried out in this paper. The main focus is to develop a simple commercial rapid prototyping and tooling system with the exiting laser welding technology. The process is investigated as a function of laser parameters and process variables. Basic parts were fabricated as out-put and their microstructure, hardness and tensile strength are examined for the reliability. In addition, Its advantages and disadvantages are discussed as a rapid prototyping and tooling system.

  • PDF

Concurrent Engineering Approach to the Die Design of Metal Forming Process using Rapid Prototyping and Finite Element Analysis (쾌속 3차원 조형법과 유한요소해석을 연계한 소성가공 금형설계의 동시공학적 접근방법)

  • Part, K.;Yoon, J.W.;Cho, J.R.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.146-154
    • /
    • 1996
  • In this work, rapid prototyping and three-dimensional finite element analysis are simultaneously applied to the die design of metal forming processes. Rapid prototyping is a new prototyping technology which produces three-dimensional part models directly from CAD data and has been extensively applied to various manufacturing processes. There are many types of rapid prototyping systems due to their building principles and materials. In this work, Stereolithography Apparatus(SLA), which is the most widely used rapidprototyping system, is introduced to manufacture the die set. For general preparation of STL file, which is the standard input file of rapid prototyping system, mesh data which are used in describing the die surface in finite element analysis are translated so that rapid prototyping and finite element analysis are dffectively connected. A die set for spider forging and a clover punch for deep drawing section are manufactured effciently using SLA prototypes, and metal forming experiments are carried out using them. Comparing the result of experiments with that of analyses, the processes can be predicted and designed successfully.

  • PDF

Rapid Product Fabrication using Wire Welding with CO2 Laser Irradiation and Milling Process Technology (레이저 용접공정과 밀링공정에 의한 쾌속 금속 시작품)

  • Choi, Du-Seon;Lee, Su-Hong;Sin, Bo-Seong;Yun, Gyeong-Gu;Hwang, Gyeong-Hyeon;Park, Jin-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.104-110
    • /
    • 2001
  • The rapid prototyping and tooling technology has been developed. However, most commercial ones currently use resins or waxes as the raw materials. These days, the direct metal deposition methods are being investigated as new rapid prototyping and tooling technology. A fundamental study on rapid prototyping and tooling with wire welding technology using CO2 laser radiation was carried out in this paper. The main focus is to develop a simple commercial rapid prototyping and tooling system with the exiting laser welding technology as output and their microstructure, hardness and tensile strength are examined for the reliability. In addition, its advantages and disadvantages are discussed as a rapid prototyping and tooling system.

  • PDF

Development of a Three Dimensional Control System for Implementing Rapid Prototyping Technology (쾌속조형기술의 구현을 위한 3차원 제어시스템 개발)

  • Cho, Sung-Mok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.775-780
    • /
    • 2007
  • Rapid Prototyping (RP) is a technology that produces prototype parts from 3D computer aided design model data without intermediate processing technology rapidly. CAD model data are created from 3D object digitizing systems but presented just as 2D data when they are printed as a hard copy or displayed on a monitor. However, Rapid Prototyping Technology fabricates 3D objects the same that CAD data because it transforms designed 3D CAD data into 2D cross sectional data, and manufactures layer by layer deposition sequentially. But most of all the small and medium scale companies which produce a toothbrush, a toy and such like provisions are in difficult situations to buy RP system because it is very expensive. In this paper, we propose a 3D control system adopting open source programs for implementing Rapid Prototyping Technology in order that RP system can be purchase at a moderate price.

  • PDF

Development of Prototyping and Die/Mold Manufacturing Technology using Rapid Prototyping(SLA) (쾌속 3차원 조형법을 이용한 시작기술 및 시작금형)

  • Park, K.;Lee, S.C.;Jung, J.H.;Yang, D.Y.;Yoon, J.R.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1582-1589
    • /
    • 1996
  • Rapid prototyping is a new prototyping technology which produces three dimensional part models directrly from CAD data and has been extensively applied to various manufacturing processes. There are many types of rapid prototyping systems due to their building principles and materials. In this work, Stereolithography Appaaratus(SLA) which is the most widely-used rapid prototyping system is introduced to achieve die/mold technology innovation. For the purpose, the prototyping technology using SLA is developed such that patterns of which shapes are quite complicated are successfully produced with high accuracy. Using these patterns, prototype die/molds are efficientrly manufactured; a turbocharger rotor, a fan and a wheel patterns, prototype die/molds are efficienterly manufactured ; a turbochager rotor, a fan and a wheel pattern are made, and the molds of the investment casting, the injection molding and the die casting are manufactured respectively. The casting products are produced using these molds and it turns out that these methods are quitre effective for manufacturing products of complicated geometry from the viewpoint of efficiency and productivity.

Development of Precision Casting Technology for Inlet Gear Box using Selective Laser Sintering (선택적 레이저 소결법을 이용한 기어박스의 정밀주조기술개발)

  • 김천기
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.30-37
    • /
    • 2000
  • In this paper rapid prototyping and precision casting technology have been developed for the manufacturing of inlet gear box of an airplane, Rapid prototyping is a new prototyping technology that produces complicated parts directly from three-dimensional CAD data with a high efficiency and has been extensively applied to various manufacturing processes. In the present work Selective Lase Sintering(SLS) system is utilized in order to manufacture prototype of the inlet gear box. Prototyping technology using SLS is also investigated from the viewpoint of accuracy. Using the SLS master the casting products are manufactured through several processes such as : vacuum casting lost wax shell casting and investment cast-ing. The shrinkage characteristics of wax and cast iron in the casting procedures are considered and then reflected to the design procedure so that the accuracy of the product is improved consequently.

  • PDF

쾌속 3차원 조형법과 유한요수해석을 연계한 소성가공 금형설계의 동시공학적 접근방법

  • Park, Geun;Yoon, Jung-Hwan;Yang, Dong-Ryul;Cho, Jong-Rae
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.884-889
    • /
    • 1994
  • In this work, rapid prototyping and three dimensional finite element analysis are simltaneously applied to design metal forming processes. Rapid prototyping is a new prototyping technology which producess three dimensional part models directly from CAD data and has been extensively applied to various manufacturing processes. There are many types of rapid prototyping systems due to their building principles and materials. In this work, Stereolithography Apparatus (SLA) which is the most widely-used rapid prototyping system is introduced to manufacture the die set. To prepare STL file generally, mesh data which are in describing the die surface in finite element analysis are translated so that rapid prototyping and finite element analysis are effectively connected. The die sets are manufactured using SLA prototypes, and matal forming experiments are carried out using them. Comparing experiments results with analyses, the processes can be predicted and designed successfully.

  • PDF

Research of Application of Rapid Prototyping in Architectural Industry and Its Educational Status - With Focus on the Mid-size Firm and Graduate CAAD Education in U.S- (건축 산업에서의 신속조형기술 응용과 교육 연구 -미국의 중소규모 사무소와 대학원 CAAD 교육을 중심으로-)

  • Jung, C. H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.77-91
    • /
    • 2004
  • Integrating computer-aided design with computer-aided fabrication and construction will fundamentally redefine the relationship between design and construction. Rapid prototyping(RP) is evaluated as one of the integration method available but it has been regarded as very expensive and complex design evaluation tool and is only suitable for large mechanical design shops in automobile and aerospace industry. However current status of rapid prototyping is changing since the new generation of RP equipment, less expensive and more user-friendlier, now can be installed and use in design firms. Simultaneously increasing use of 3D CAAD software is also helping to use rapid prototyping widely. It is crucial to acknowledge rapid prototyping technologies are not only for avant-garde architect such as Frank O. Gehry but ordinary 90% architects, who can have benefit from fast and cost-effective technology. With its fast development and adaptation in architectural industry, it is quite necessary to include rapid prototyping education in regular CAAD courses either undergraduate or graduate level.

Fabrication of a Large Object by Rapid Prototyping Technics (쾌속조형 원리를 이용한 대형 모델의 제작)

  • Choi, Hong-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.120-128
    • /
    • 2007
  • In order to reduce the lead-time and cost, the technology of rapid prototyping(RP) has been widely used. This paper describes the methodology to fabricate a large object by using the principle of rapid prototyping. By laminating thick and sloping polystyrene foam plates, we can make the large model which has three dimensional, continuous surfaces faster and easier than conventional processes. Estimated error was much smaller than other RP products which have stepped effect. For accuracy improvement and post processing, machined metal plates are added between the thick plates. To keep the continuity of surface and strengthen the model, pilot holes and guide rods are applied. By the methodology described in this paper, a missile body with flush air intake was fabricated.

Development of Rapid Prototyping Technique using Projection Welding (Projection Welding을 이용한 쾌속 3차원 조형법의 개발)

  • 강상무;이상찬;양동렬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.101-104
    • /
    • 1997
  • The purpose of this study is the development of the extensive Rapid Prototyping Technique, which can resolve the long-term manufacturing process, shrinkage and deformation occurring rapid prototyping technique. To begin with, the various specimens for tensile and bending test were manufactured on the basis of this modeling technology. Then, many kinds of the laminate pieces for the test were made by using the sheet steels 1 mm and 2 mm thickness which is composed of the same ingredient. Not only the mechanical strength of the both of the laminate specimens by the developed Rapid Prototyping using projection welding and non-laminate specimens of 5 mm thickness were evaluated, but the mechanical strength of the specimens of the tensile and bending test composed of heterogeneous components were also estimated.

  • PDF