• Title/Summary/Keyword: Rapid Prototyping Method

Search Result 162, Processing Time 0.026 seconds

A Study on Generation and Operation of Dynamic Pattern at Micro-stereolithography using $DMD^{TM}$ ($DMD^{TM}$를 이용한 마이크로 광 조형 시스템에서 다이나믹 패턴 생성 및 구동에 관한 연구)

  • Kim H.S.;Choi J.W.;Ha Y.M.;Kwon B.H.;Won M.H.;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1214-1218
    • /
    • 2005
  • As demands for precision parts are increased, existing methods to fabricate them such as MEMS, LIGA technology have the technical limitations like high precision, high functionality and ultra miniaturization. A micro-stereolithography technology based on $DMD^{TM}$(Digital Micromirror Device) can meet these demands. In this technology, STL file is the standard format as the same of conventional rapid prototyping system, and 3D part is fabricated by stacking layers that are sliced as 2D section from STL file. Whereas in conventional method, the resin surface is cured as scanning laser beam spot according to the section shape, but in this research, we use integral process which enables to cure the resin surface at one time. In this paper, we deal with the dynamic pattern generation and $DMD^{TM}$ operation to fabricate micro structures. Firstly, we address effective slicing method of STL file, conversion to bitmap, and dynamic pattern generation. Secondly, we suggest $DMD^{TM}$ operation and optimal support manufacturing for $DMD^{TM}$ mounting. Thirdly, we examine the problems on continuous stacking layers, and their improvements in software aspects.

  • PDF

Optimization of Single Point Incremental Forming of Al5052-O Sheet (Al5052-O 판재의 최적 점진성형 연구)

  • Kim, Chan Il;Xiao, Xiao;Do, Van Cuong;Kim, Young Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.181-186
    • /
    • 2017
  • Single point incremental forming (SPIF) is a sheet-forming technique. It is a die-less sheet metal manufacturing process for rapid prototyping and small batch production. The Critical parameters in the forming process include tool diameter, step depth, feed rate, spindle speed, etc. In this study, these parameters and the die shape corresponding to the Varying Wall Angle Conical Frustum(VWACF) model were used for forming 0.8mm in thick Al5052-O sheets. The Taguchi method of Experiments of Design (DOE) and Grey relational optimization were used to determine the optimum parameters in SPIF. A response study was performed on formability, spring back, and thickness reduction. The research shows that the optimum combination of these parameters that yield best performance of SPIF is as follows: tool diameter, 6mm; spin speed, 60rpm; step depth, 0.3mm; and feed rate, 500mm/min.

Analysis of Shaping Parameters Influencing on Dimensional Accuracy in Single Point Incremental Sheet Metal Forming (음각 점진성형에서 치수정밀도에 영향을 미치는 형상 파라미터 분석)

  • Kang, Jae Gwan;Kang, Han Soo;Jung, Jong-Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.4
    • /
    • pp.90-96
    • /
    • 2016
  • Incremental sheet forming (ISF) is a highly versatile and flexible process for rapid manufacturing of complex sheet metal parts. Compared to conventional sheet forming processes, ISF is of a clear advantage in manufacturing small batch or customized parts. ISF needs die-less machine alone, while conventional sheet forming requires highly expensive facilities like dies, molds, and presses. This equipment takes long time to get preparation for manufacturing. However, ISF does not need the full facilities nor much cost and time. Because of the facts, ISF is continuously being used for small batch or prototyping manufacturing in current industries. However, spring-back induced in the process of incremental forming becomes a critical drawback on precision manufacturing. Since sheet metal, being a raw material for ISF, has property to resilience, spring-back would come in the case. It is the research objective to investigate how geometrical shaping parameters make effect on shape dimensional errors. In order to analyze the spring-back occurred in the process, this study experimented on Al 1015 material in the ISF. The statistical tool employed experimental design with factors. The table of orthogonal arrays of $L_8(2^7)$ are used to design the experiments and ANOVA method are employed to statistically analyze the collected data. The results of the analysis from this study shows that the type of shape and the slope of bottom are the significant, whereas the shape size, the shape height, and the side angle are not significant factors on dimensional errors. More error incurred on the pyramid than on the circular type in the experiments. The sloped bottom showed higher errors than the flat one.

Usability Evaluation of OSD(On Screen Display) User Interface Based on Subjective Preference (주관적 선호도에 의한 제품 OSD(On Screen Display)의 사용성 평가)

  • 박정순;이건표
    • Archives of design research
    • /
    • v.12 no.3
    • /
    • pp.105-114
    • /
    • 1999
  • As the microelectronics technology is developed, new types of smart intelligent products are being emerged. OSD user interface is one of the critical factor in this kind of product, especially brown goods and information devices, as it is responsible for imput and output function. OSD is being treated as accompaniment to hardware in spite of its importance, and therefore is developed from only simple and separate usability testing based on performance measurement. This study propose a usability evaluation method of OSD based on subjective preference to support existing usability testing. The purpose of this analysis is to make clear what is important factor and how its preference level is from the user's viewpoint. The various attributes of OSD are clarified from user's questionaire and interview, and orthogonal array is generated with specified factor levels. The prototypes are generated from rapid prototyping tool and tested in natural simulation environment. The preference data which collected in this usability testing is analyzed with conjoint analysis module. This usability evaluation is not the final stage in user interface design process but the early planned and circulated stage.

  • PDF

Usability Evaluation of Informative Home Appliances OSD based on Conjoint Analysis (컨조인트 분석을 이용한 정보 가전 OSD의 사용성 평가)

  • 박정순
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.2
    • /
    • pp.53-63
    • /
    • 2002
  • As the microelectronics technology is developed, new types d smart intelligent produce are being emerged. OSD user interface is one of the critical factor in this kind of product, especially brown goods and information devices, as it is responsible for input and output function. OSD is being treated as accompaniment to hardware in spite of its importance, and therefore is developed from only simple and separate usability testing based on performance measurement. This study propose a usability evaluation method of OSD based on subjective preference to support existing usability testing. The purpose of this analysis is to make dear what is important factor and how its preference level is from the user's viewpoint. The various attributes of OSD are clarified from user's questionaire and interview, and orthogonal array is generated with specifed factor levels. The prototypes are generated from rapid prototyping tool and tested in natural simulation environment. The preference data which collected in this usability testing is analyzed with conjoint analysis module. This usability evaluation is not the final stage in user interface design process but the early famed and circulated stage.

  • PDF

In vitro evaluation of the bond strength between various ceramics and cobalt-chromium alloy fabricated by selective laser sintering

  • Bae, Eun-Jeong;Kim, Hae-Young;Kim, Woong-Chul;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.312-316
    • /
    • 2015
  • PURPOSE. This study aimed to present the clinical applicability of restorations fabricated by a new method, by comparing the bond strength of between ceramic powder with different coefficient of thermal expansion and alloys fabricated by Selective laser sintering (SLS). MATERIALS AND METHODS. Fifty Co-Cr alloy specimens ($25.0{\times}3.0{\times}0.5mm$) were prepared by SLS and fired with the ceramic ($8.0{\times}3.0{\times}0.5mm$) (ISO 9693:1999). For comparison, ceramics with different coefficient of thermal expansion were used. The bond strength was measured by three-point bending testing and surfaces were observed with FE-SEM. Results were analyzed with a one-way ANOVA (${\alpha}$=.05). RESULTS. The mean values of Duceram Kiss ($61.18{\pm}6.86MPa$), Vita VM13 ($60.30{\pm}7.14MPa$), Ceramco 3 ($58.87{\pm}5.33MPa$), Noritake EX-3 ($55.86{\pm}7.53MPa$), and Vintage MP ($55.15{\pm}7.53MPa$) were found. No significant difference was observed between the bond strengths of the various metal-ceramics. The surfaces of the specimens possessed minute gaps between the additive manufactured layers. CONCLUSION. All the five powders have bond strengths higher than the required 25 MPa minimum (ISO 9693); therefore, various powders can be applied to metal structures fabricated by SLS.

A Study of the Standardization in the Mandibular First Premolar of the Middle Aged Korean (중년층 한국인 하악 제1소구치의 표준화 연구)

  • Chun, Keyoung-Jin;Lee, Ho-Jung;Chung, Dong-Teak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.154-163
    • /
    • 2006
  • Tooth morphology is the most important scientific aspect of dental medicine in regards to the treatment and study of teeth attrition relating to the absence of teeth due to dental caries or the occlusion of teeth due to external force. Most of the studies have focused on the external morphology in cutting teeth regardless of sex and age. However, the importance of internal morphology in the treatment of damaged teeth has been increased. Therefore, this study established the measurement criteria for the morphology of the mandibular first premolar which had never been presented, in order to investigate the external and internal morphologies of mandibular first premolars, and introduced a non-destructive method such as a microcomputed tomogrphy. Mandibular first premolars in superlative state were taken from molars of middle aged males and females and used as specimens for this study. Criteria relating to the internal and external morphology measurements were established to quantify the length of the teeth in identical state. Two dimensional image data for the selected mandibular first premolar were obtained by taking the image of each O.022mm section, which is perpendicular to the vertical direction using the microcomputed tomography. The Vworks program was applied to measure the length of each morphological part according to the set measurement criteria. These measured data were compared with the data presented by G. V. Black and the internal and external morphologies of the teeth of middle aged Koreans were also compared according to gender. In addition, the methodology for measurement of the mandibular first premolar was presented and according to this, the standardized mandibular first premolars of middle aged Korean males and females were made by using a rapid prototyping system.

Development of Dress Forms for the Aged Women Based on Their Body Shapes Applying 3D Body Scan Data (3차원 인체 형상을 이용한 실버 여성 패션 산업용 인대 모형 개발)

  • Kim, Soo-A;Choi, Hei-Sun
    • The Research Journal of the Costume Culture
    • /
    • v.18 no.1
    • /
    • pp.80-92
    • /
    • 2010
  • This research aims at developing the dress form for the aged women based on their body shapes using the three-dimensional body scan data with the body shape categorization(according to the previous research). To accomplish this goal, the sample group of representative body shape of the 50% of median was selected by using the high frequency proportion range of each type of body shape of the aged women, and the sample group of representative body shape of each type was averaged in a three-dimensional way by using the morphing method of a three-dimension reverse-engineered software. RP in the form of torso was produced based on the shape data of the final model and the data was formed into an actual object, by which an aged women's dress form model was drawn out. The differences of the girth of the bust, hip and waist between the developed dress form model and the existing dress form model were examined. The result showed that the developed dress form had a bigger size of waist girth than that of bust and hip girth, compared to the existing dress form, which shows that it reflects the aged women's tendency of abdomen obesity, so it's expected to be more proper for the human bodies of the targeted age group than the existing dress form. These research results may help design the clothing suitable for the body shape of the aged women so that their demand for the clothing of good fit will be satisfied in the future.

Characteristics of single/poly crystalline silicon etching by$Ar^+$ ion laser for MEMS applications (MEMS 응용을 위한 $Ar^+$ 이온 레이저에 의한 단결정/다결정 실리콘 식각 특성)

  • Lee, Hyun-Ki;Han, Seung-Oh;Park, Jung-Ho;Lee, Cheon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.396-401
    • /
    • 1999
  • In this study, $Ar^+$ ion laser etching process of single/poly-crystalline Si with $CCl_2F_2$ gas is investigated for MEMS applications. In general, laser direct etching process is useful in microelectronic process, fabrication of micro sensors and actuators, rapid prototyping, and complementary processing because of the advantages of 3D micromachining, local etching/deposition process, and maskless process with high resolution. In this study, a pyrolytic method, in which $CCl_2F_2$ gasetches molten Si by the focused laser, was used. In order to analyze the temperature profile of Si by the focused laser, the 3D heat conduction equation was analytically solved. In order to investigate the process parameters dependence of etching characteristics, laser power, $CCl_2F_2$ gas pressure, and scanning speed were varied and the experimental results were observed by SEM. The aspect ratio was measured in multiple scanning and the simple 3D structure was fabricated. In addition, the etching characteristics of $6\mum$ thick poly-crystalline Si on the insulator was investigated to obtain flat bottom and vertical side wall for MEMS applications.

  • PDF

A Watermarking Algorithm of 3D Mesh Model Using Spherical Parameterization (구면 파라미터기법을 이용한 3차원 메쉬 모델의 워더마킹 알고리즘)

  • Cui, Ji-Zhe;Kim, Jong-Weon;Choi, Jong-Uk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.1
    • /
    • pp.149-159
    • /
    • 2008
  • In this paper, we propose a blind watermarking algorithm of 3d mesh model using spherical parameterization. Spherical parameterization is a useful method which is applicable to 3D data processing. Especially, orthogonal coordinate can not analyse the feature of the vertex coordination of the 3D mesh model, but this is possible to analyse and process. In this paper, the centroid center of the 3D model was set to the origin of the spherical coordinate, the orthogonal coordinate system was transformed to the spherical coordinate system, and then the spherical parameterization was applied. The watermark was embedded via addition/modification of the vertex after the feature analysis of the geometrical information and topological information. This algorithm is robust against to the typical geometrical attacks such as translation, scaling and rotation. It is also robust to the mesh reordering, file format change, mesh simplification, and smoothing. In this case, the this algorithm can extract the watermark information about $90{\sim}98%$ from the attacked model. This means it can be applicable to the game, virtual reality and rapid prototyping fields.