• Title/Summary/Keyword: Rapid Heating

Search Result 391, Processing Time 0.035 seconds

Establishment of Analytical Method of Prochloraz in Cabbage, Apple, Mandarin, Pepper and Hulled rice with GC-ECD (GC-ECD를 이용한 배추, 사과, 감귤, 고추, 현미 중 살균제 Prochloraz의 분석법 확립)

  • Lee, Eun-Mi;Lee, Hye-Ri;Riu, Myoung-Joo;Park, Hee-Won;Na, Ye-Rim;Song, Hyuk-Hwan;Keum, Young-Soo;Zhu, Youngzhe;Kim, Jeong-Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.427-434
    • /
    • 2009
  • Analytical method for prochloraz in cabbage, apple, pepper, mandarin, and hulled rice was established by conversion it to 2,4,6-trichlorophenol (TCP). Crop samples were extracted with acetonitrile, and partitioned with dichloromethane. The sample extracts were hydrolyzed with pyridine hydrochloride in a vial by heating for 1 hour, and analyzed with GC-ECD after partitioning with dichloromethane. Method quantification limit (MQL) of prochloraz was 0.01 mg/kg. Recoveries at 0.1 mg/kg level was 105-113% while at 0.5 mg/kg level was 82-87%. In both of the cases CV was less than 10%. Through this procedure soxhlet extraction and refluxing apparatus of conventional method were discarded and simple solvent extraction and small vial were successfully employed, resulting in simple, rapid, economic and more precise method.

The Development of Ultrasonic Hyperthermia Simulator to Improve the Efficiency of Ultrasonic Therapy (초음파 치료의 효율성 향상을 위한 초음파 온열 시뮬레이터 개발)

  • Yu, W.J.;Noh, S.C.;Jung, D.W.;Park, J.H.;Choi, M.J.;Choi, H.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.5
    • /
    • pp.418-427
    • /
    • 2009
  • As many people are westernizing their life style and food consumption habits, a number of patients who have malignant tumors which grow very rapidly and hazardously destroy the human body are increasing. Ultrasonic hyperthermia is not only one of the tumor treatment methods which employs the non-radioactive ultrasonic waves to increase the temperature at the tumor region up to $40\sim45^{\circ}C$ to destroy and suppress tumor cells but also has been proved by many studies. Due to the rapid development of High Intensity Focused Ultrasound(HIFU), the ultrasound hyperthemia extensively boosts its applications in clinical field. For those reasons, Computed simulation factor should be needed before inspection to patients. To prove efficiency of ultrasonic hyperthermia, precise acoustic field measurement considering tissue characteristics and a heating experiment with tissue mimicking material phantom were conducted for effectiveness of simulation program. Finally, in this study, the computer simulation program verified the anticipated temperature effects induced by ultrasound hyperthermia. In the near future, it is hoped that this simulation program could be utilized to improve the efficiency of ultrasound hyperthermia.

Study on Residual Stress Distribution in Thick Plate Welded Material Using Indentation Equipment (압입시험기를 이용한 후판용접재의 잔류응력 분포에 관한 연구)

  • Huh, Sun-Chul;Kim, Gwi-Nam;Lee, Jong-Seok;Park, Cheol-Hong;Park, Joun-Sung;Park, Won-Jo
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.66-71
    • /
    • 2011
  • Recently, the production of shipbuilding and offshore plant industries, with a trend toward large structures, has led to an increased use of high strength ultra-thick plates. The use of ultra-thick plates increases the welding tasks, and the welding process generates distortion and residual stress in the weldment because of the rapid heating and cooling. Welding distortion and residual stress in the welded structure resulte in many troubles such as deformation and life deterioration. In particular, the welding residual stress has an important effect on welding deformation, fatigue, buckling strength, brittleness, etc. The purpose of this study was to evaluate the residual stress at a multi-pass weldment using an experimental method for EH36 high-tension steel. In this experimental method, AIS3000 was used to measure the residual stress of a welded part, HAZ, and base metal; EPMA and XRD were used to study the material properties.

Performance Characteristics of a High-Speed Jet Produced by a Pulsed-Arc Spark Jet Plasma Actuator (펄스 아크 스파크 제트 플라즈마 구동기에 의해 발생된 고속 제트의 효율적 운전 성능 특성에 관한 연구)

  • Kim, Young Sun;Shin, Jichul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.907-913
    • /
    • 2017
  • The performance of a spark jet driven by pulsed-arc plasma was investigated experimentally for various energy input. A high-speed jet (about 330 m/s) was obtained by rapid gas heating produced by 37 mJ of deposited energy per pulse. The peak velocity and penetration distance of the jet were proportional to the deposited power and the deposited energy per pulse, respectively. A smaller orifice diameter produces a higher velocity jet at lower energy levels. For the same deposited energy, higher-current pulses produce a higher jet velocity than higher-pulse-width pulses. A total deposited energy of about 10 mJ per pulse with a pulse duration of about $10{\mu}s$ was found to be the optimum for energy- efficient operation.

Study on the Performance of Infrared Thermal Imaging Light Source for Detection of Impact Defects in CFRP Composite Sandwich Panels

  • Park, Hee-Sang;Choi, Man-Yong;Kwon, Koo-Ahn;Park, Jeong-Hak;Choi, Won-Jae;Jung, Hyun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.2
    • /
    • pp.91-98
    • /
    • 2017
  • Recently, composite materials have been mainly used in the main wings, ailerons, and fuselages of aircraft and rotor blades of helicopters. Composite materials used in rapid moving structures are subject to impact by hail, lightning, and bird strike. Such an impact can destroy fiber tissues in the composite materials as well as deform the composite materials, resulting in various problems such as weakened rigidity of the composite structure and penetration of water into tiny cracks. In this study, experiments were conducted using a 2 kW halogen lamp which is most frequently used as a light source, a 2 kW near-infrared lamp, which is used for heating to a high temperature, and a 6 kW xenon flash lamp which emits a large amount of energy for a moment. CFRP composite sandwich panels using Nomex honeycomb core were used as the specimens. Experiments were carried out under impact damages of 1, 4 and 8 J. It was found that the detection of defects was fast when the xenon flash lamp was used. The detection of damaged regions was excellent when the halogen lamp was used. Furthermore, the near-infrared lamp is an effective technology for showing the surface of a test object.

HPLC Assay and Renal Excretion Characteristics of Theophylline and Its Metabolites in Rat (테오필린과 그 대사체의 HPLC 동시 정량 및 신(腎) 배설 특성)

  • Kuh, Hyo-Jeong;Shim, Chang-Koo;Lee, Min-Hwa;Kim, Shin-Keun
    • Journal of Pharmaceutical Investigation
    • /
    • v.21 no.1
    • /
    • pp.33-41
    • /
    • 1991
  • A high-performance liquid chromatographic (HPLC) method was developed for the simultaneous determination of theophylline(TP) and its metabolites, 1-methyluric acid (1-MU) and 1,3-dimethyluric acid (1,3-DMU), in rat plasma and urine. An $100\;{\mu}l$ aliquot of a plasma or urine sample was mixed with $250\;{\mu}l$ of acetonitrite and vortexed. After centrifugation, $200\;{\mu}l$ (plasma) or $20\;{\mu}l$ (urine) aliquot of the supernatant was dried by $N_2$ stream and redissolved in $100\;{\mu}l$ (plasma) or $200\;{\mu}l$ (urine) of the mobile phase. A $20\;{\mu}l$ of the mobile phase solution was injected onto a $C_{18}$ reversed-phase column. The column was maintained at $45^{\circ}C$ by the aid of electric heating jacket. The mobile phase was a 3%(v/v) methanol solution in deionized water which contains sodium acetate (100 mM) and tetrabutyl ammonium hydroxide (4 mM). pH of the mobile phase was adjusted 4.5 by the addition of acetic acid. Detection limits for TP, 1-MU, and 1,3-DMU in plasma were 0.2, 0.1 and $0.1\;{\mu}/ml$, respectively and the corresponding values in urine were all $5\;{\mu}g/ml$. Inter- and intra-day variability of the assay for all compounds in the plasma samples was less than 5.5 and 3.8%, respectively. The retention times for 1-MU, 1,3-DMU, and TP were approximately 7, 8.5 and 18 min, respectively. Sample preparation procedure used in this method was simple, rapid and reproducible. Renal clearance of TP and its metabolites in rats showed plasma concentration dependency indicating renal tubular secretion and reabsorption of them.

  • PDF

Kinetic and Thermodynamic Features of Combustion of Superfine Aluminum Powders in Air

  • Kwon, Young-Soon;Park, Pyuck-Pa;Kim, Ji-Soon;Gromov, Alexander;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.308-313
    • /
    • 2004
  • An experimental study on the combustion of superfine aluminum powders (average particle diameter, a$_{s}$: ∼0.1 ${\mu}{\textrm}{m}$) in air is reported. The formation of aluminum nitride during the combustion of aluminum in air and the influence of the combustion scenario on the structures and compositions of the final products are in the focus of this study. The experiments were conducted in an air (pressure: 1 atm). Superfine aluminum powders were produced by the wire electrical explosion method. Such superfine aluminum powder is stable in air but once ignited it can burn in a self-sustaining way due to its low bulk: density (∼0.1 g/㎤) and a low thermal conductivity. During combustion, the temperature and radiation were measured and the actual burning process was recorded by a video camera. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and chemical analysis were performed on the both initial powders and final products. It was found that the powders, ignited by local heating, burned in a two-stage self-propagating regime. The products of the first stage consisted of unreacted aluminum (-70 mass %) and amorphous oxides with traces of AlN. After the second stage the AlN content exceeded 50 mass % and the residual Al content decreased to ∼10 mass %. A qualitative discussion is given on the kinetic limitation for AlN oxidation due to rapid condensation and encapsulation of gaseous AlN.N.

Study of Hydrolysis of Al Powder and Compaction of Nano Alumina by Spark Plasma Sintering(SPS) (Al 분말의 수화 반응과 스파크 플라즈마 열처리법으로 제조된 알루미나 성형체 연구)

  • Uhm Y. R.;Lee M. K.;Rhee C. K.
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.422-427
    • /
    • 2005
  • The $Al_2O_3$ with various phases were prepared by simple ex-situ hydrolysis and spark plasma sintering (SPS) process of Al powder. The nano bayerite $(\beta-Al(OH)_3)$ phase was derived by hydrolysis of commercial powder of Al with micrometer size, whereas the bohemite (AlO(OH)) phase was obtained by hydrolysis of nano Al powder synthesized by pulsed wire evaporation (PWE) method. Compaction as well as dehydration of both nano bayerite and bohemite was carried out simultaneously by SPS method, which is used to fabricate dense powder compacts with a rapid heating rate of $100^{\circ}C$ per min. under the pressure of 50MPa. After compaction treatment in the temperature ranges from $100^{\circ}C\;to\; 1100^{\circ}C$, the bayerite and bohemite phases change into various alumina phases depending on the compaction temperatures. The bayerite shows phase transition of $Al(OH)_3{\to}{\eta}-Al_2O_3{\to}{\theta}-Al_2O_3{\to}\alpha-Al_2O_3$ sequences. On the other hand, the bohemite experiences the phase transition from AlO(OH) to ${\gamma}-Al_2O_3\;at\;350^{\circ}C.$ It shows AlO(OH) ${\gamma}-Al_2O_3{\to}{\delta}-Al_2O_3{\to}{\alpha}-Al_2O_3$ sequences. The ${\gamma}-Al_2O_3$ compacted at $550^{\circ}C$ shows a high surface area $(138m^2/g)$.

Modeling for Transparent Toaster with a Cap of Folding Type (폴더형 캡의 투명 토스터 모델링)

  • Kim, In-Ho;Kim, Ye-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2013-2020
    • /
    • 2010
  • This paper presents a study on the modeling for transparent toaster with a cap of folding type. The toaster was modelled to solve problems of customer's unsatisfaction such as heat loss, input of a piece of dirt, unidentified heating state of sliced toaster. Rapid prototyping was followed by the first modeling, and the second modeling was implemented in order to solve the problems of the first modeling such as interference of holder and door, and the third modeling was developed with a cap of folding type through analysis of assembly and simulation. The 3D modeling tool used in this paper was Pro/Engineer 4.0. The modeling was designed to minimize heat loss and structured with transparent outer case. So the toasting procedure will be identified with the naked eye, and the transparent toaster will improve the customer's aesthetic satisfaction.

A study on Optimal Design for the Inductance and Coreloss of Plate Type Induction Heater for Electric Vehicle (전기자동차용 판형 인덕션 히터의 인덕턴스 및 철손 최적설계 연구)

  • Kang, Jun-Kyu;Jo, Byoung-Wook;Kim, Ki-Chan
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.10
    • /
    • pp.425-430
    • /
    • 2018
  • The battery system of an electric vehicle suffers from the problem the battery output and the service life decrease at low temperature. A Positive Temperature Coefficient(PTC) heater is used for maintaining room temperature but is heavy due to a complicated insulation structure. The larger the weight is, the lower the fuel economy of the electric vehicle is. On the other hand a induction heater have a simple insulation structure, which is effective in weight reduction and has a rapid temperature rise. The induction heater consists of an LC resonance circuit. The larger the capacitance is, the higher the price and weight is. Therefore, the inductance should be increased to reduce the capacitance. Also, the main heat source of the induction heater is coreloss. So, it is important to optimize inductance and coreloss in terms of electromagnetic field design. In this paper, the inductance and the coreloss according to the change of the induction heater structure were optimized through the Taguchi method and Finite Element Method(FEM) simulation.