• Title/Summary/Keyword: Rapid Cooling

Search Result 412, Processing Time 0.013 seconds

Improvement of Cooling Technology through Atmosphere Gas Management

  • Renard, Michel;Dosogne, Edgar;Crutzen, Jean-Pierre;Raick, Jean-Marc;Ma, Jia Ji;Lv, Jun;Ma, Bing Zhi
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.217-222
    • /
    • 2009
  • The production of advanced high strength steels requires the improvement of cooling technology. The use of high cooling rates allows relatively low levels of expensive alloying additions to ensure sufficient hardenability. In classical annealing and hot-dip galvanizing lines a mixing station is used to provide atmosphere gas containing 3-5% hydrogen and 97-95% nitrogen in the various sections of the furnace, including the rapid cooling section. Heat exchange enhancement in this cooling section can be insured by the increased hydrogen concentration. Drever International developed a patented improvement of cooling technology based on the following features: pure hydrogen gas is injected only in the rapid cooling section whereas the different sections of the furnace are supplied with pure nitrogen gas; the control of flows through atmosphere gas management allows to get high hydrogen concentration in cooling section and low hydrogen content in the other furnace zones. This cooling technology development insures higher cooling rates without additional expensive hydrogen gas consumption and without the use of complex sealing equipments between zones. In addition reduction in electrical energy consumption is obtained. This atmosphere control development can be combined with geometrical design improvements in order to get optimised cooling technology providing high cooling rates as well as reduced strip vibration amplitudes. Extensive validation of theoretical research has been conducted on industrial lines. New lines as well as existing lines, with limited modifications, can be equipped with this new development. Up to now this technology has successfully been implemented on 6 existing and 7 new lines in Europe and Asia.

Reduction of Drying Shrinkage of Mortar and Concrete by Expansion of Rapid Cooling Slag Fine Aggregate (급냉 슬래그 잔골재의 팽창성을 활용한 모르타르 및 콘크리트의 건조수축저감에 관한 연구)

  • Lee, Dong-Gyu;Min, Kyung-Hwan;Jeong, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3511-3517
    • /
    • 2015
  • It is necessary to maximize the durability of Concrete for the underground structure because its maintenance and reinforcement are difficult. For cracks due to drying shrinkage of the concrete on the characteristics of the material, there is a need for an alternative in the deterioration phenomenon that occurs. In this study, fundamental properties including drying shrinkage of mortar and concrete were investigated to replace fine aggregate from cooling slag for reducing drying shrinkage of mortar and concrete. In the case of rapid cooling slag fine aggregate, it was effective to reduce and restrain initial shrinkage of mortar and concrete, and compressive strength was increased through the all specimen in proportion to its replacement ratio.

Improvments in Cost Reduction for Vacuum Sintering and Vacuum and Overpressure Sintering for Tungsten Carbides

  • Ermel, Dieter
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.293-298
    • /
    • 1998
  • In all larger hardmetal workshops furnaces for dewaxing, vacuum sintering or vacuum and overpressure sintering are today's standard. The furnace technology is well established. Equipment specifications such as operating overpressure, determine sintering cost, product quality, safety and reliability of the furnace and ultimately influence the competitiveness of the hard metal procucer in the global market. Essential furnace requirements are an efficient utilization of the furnace, an environmental friendly dewaxing system, high temperature uniformity, metallurgical treatment with process gases, as well as reduced cooling time by means of rapid cooling. Examples of reduced sintering costs are described achieved using a new design of vacuum sintering furnace with an improved rapid cooling device, cooling times are reduced by up to 45%. Additionally, a cost comparison of two different designs of vacuum overpressure sintering furnaces are included.

  • PDF

Thermo-mechanical Simulation of Boron Steel Cylinders during Heating and Rapid Cooling (원통형 보론강을 사용한 가열-급냉공정에서의 열변형 해석)

  • Suh, C.H.;Kwon, T.H.;Kang, K.P.;Choi, H.Y.;Kim, Y.S.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.475-481
    • /
    • 2014
  • Water quenching is one method of cooling after hot forming, which is presently being used for the manufacturing of automobile parts. The formed parts at room temperature are heated and then cooled rapidly in a water bath to produce high strength. The formed parts may undergo excessive thermal distortion during the water quench. In order to predict the distortion during water quenching, a coupled thermo-mechanical simulation is needed. In the current study, the simulation of heating and cooling of boron steel cylinders was performed. The material properties for the simulation were calculated from JMatPro, and the convective heat transfer coefficient was obtained from experimental tests. The results show that the thermal distortion and the residual stresses are well predicted by the coupled simulation.

Effect of Water-Cooling of Opposite SIde Caused by the Welding of Hull Internal on Weld Properties (이면 수냉이 용접부 물성에 미치는 영향)

  • 서창교;구연백;최승면
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.203-205
    • /
    • 2004
  • Welding sometimes should be done inside-hull after launching. The opposite side is contacted sea-water In this case, it should be a concern that the cooling rate expected very rapid may deteriorate microstructures, and hence these microstructures are hardened, cracking happens, or toughness would be impaired. Therefore, a test program simulating the situation has been planned and welded using the ship class materials (AH32, EH36) with the related welding consumables (E71Tl-1, E81Tl-K2) and then carried out to investigate the effect of cooling rate on weldments quality. Based on the test results, it could be concluded that the welds of which the opposite side of arc is exposed to wet or flowing water are not affected by rapid cooling.

  • PDF

Fabrication and Characteristics of Thermal Sprayed Ni-Cr-B-Si System Amorphous Coatings (Ni-Cr-B-Si계 비정질 용사피막의 제조 및 특성)

  • 정하윤;김태형;박경채
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.53-59
    • /
    • 1999
  • Amorphous alloys have also been called glassy alloys or non-crystalline alloys. They are made by the rapid solidification. The solidification occurs so rapid that the atoms are frozen in their liquid configuration. There are unique magnetic, mechanical, electrical and corrosive behaviors which result form their amorphous structure. In the study. amorphous coatings were manufactured with Ni-Cr-B-Si powders by flame spray. Measurement of hardness, were resistance, corrosion resistance and observation of microstructures and XRD, DSC were performed to investigate characteristics of amorphous coatings. The experimental results obtained as follow: 1) Amorphous powders could not be manufactured with the spraying in the spraying in the liquid nitrogen. But, amorphous coatings could be manufactured with the rotation cooling method by liquid nitrogen. In the fabrication of amorphous coatings, major factor was the rapid cooling by rotation of the substrate. 2) Hardness of coatings was obtained Hv 960 by formation of amorphous phase. But, wear resistance decreased. That was due to porosity in the coatings by the rapid cooling. 3) In the case of corrosion resistance, amorphous coatings were superior to air-cooled coatings. That was due to formation of amorphous phase. 4) After amorphous coatings were heat-treated at 520℃ for 1hr. hardness increased 80% and wear resistance increased 30% comparing with air cooled coatings. These were due to crystallization of amorphous phase and decrease of porosity by heat-treatment.

  • PDF

Grain Refinement of Mg-5wt%Zn Alloy by Rapid Solidification Process (급냉응고에 의한 Mg-5wt%Zn 합금의 결정립 미세화)

  • Kim, Yeon-Wook;Lee, Eun-Jong;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.17 no.3
    • /
    • pp.302-308
    • /
    • 1997
  • In spite of the fact that magnesium has low density and good machinability, its applications are restricted as a structural engineering material because of the poor strength, ductility, and corrosion resistance of the conventional ingot metallurgy alloys. Such properties can be improved by microstructural refinement via rapid solidification processing. In this study, Mg-5wt%Zn alloys have been produced as continuous strips by the melt overflow technique. In order to evaluate the influence of the cooling rate on the grain refinement and mechanical properties, seven different thickness strips were produced by means of controlling the speed of the cooling wheel. Then the microstructual observations were undertaken with the objective of evaluating the grain refinement as function of the cooling rate. The tremendous increase in hardness of Mg-Zn alloy was mainly due to the refinement of the grain structure by the effect of rapid solidification. The formation of intermetallic phases on the grain boundaries may have a positive effect on the corroion resistance. Therefore, despite competition from many other developments, the rapid solidification process emerges as a valuable method to develop superior and commercially acceptable magnesium alloys.

  • PDF

Design and Performance Test of Cooling-Air Test Equipment for the Environmental Control System in Aircraft (항공기 ECS 냉각공기 시험장비 설계 및 성능 시험)

  • So, Jae-uk;Kim, Jin-sung;Kim, Jae-woo;Kim, Jin-bok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.147-154
    • /
    • 2021
  • In this paper, the configuration and design of the test equipment are presented to examine the impact of rapid temperature change in cooling-air that may occur during the operation of the fixed wing aircraft Environmental Control System (ECS) on avionic electronic equipment. At the start of the ECS, the temperature of the air supplied by the aircraft ECS may be increased to 5.0℃ per second. In order to ensure operating of the avionic electronic equipment that is mounted on the aircraft and receives cooling-air from the ECS, testing equipment that can implement the cooling-air characteristic test environment is required. During design of test equipment was verified cooling-air rapid rate of temperature change by performing a thermal/flow analysis, performance of the test equipment implemented was verified by applying an avionic electronic equipment.