• Title/Summary/Keyword: Rapeseed reaping equipment

Search Result 3, Processing Time 0.017 seconds

Development of a Rapeseed Reaping Equipment Attachable to a Conventional Combine (I) - Design and Construction of a Prototype - (보통형 콤바인 부착용 유채 예취장치 개발(I) - 시작기 설계 및 제작 -)

  • Lee, Choung-Keun;Choi, Yong;Jun, Hyun-Jong;Lee, Seung-Kyu;Ryu, Chan-Seok;Kim, Dong-Min
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.371-378
    • /
    • 2008
  • Bio-diesel applications seem to be extended due to bio-diesel policies and changes of agricultural environment. This study was conducted to develop a rapeseed reaping equipment attachable to the conventional combine. This paper was intended to report concept design, process and manufacturing of the prototype rapeseed reaping equipment. For concept design, physical properties of "SUNMANG", which is a typical rapeseed as bio-diesel materials, were considered. The designed prototype rapeseed reaping equipment consisted of wide-width plates, finger type knifes, side cutter knifes and drive equipments. The wide-width plate is 2.1 m wide, 0.7 m long, and 0.002 m thick. The finger type cutter knifes have 14.5 fingers, 30 knifes, and the specification was 7.6 cm of pitch, 8.3 cm of length and $21^{\circ}$ of cutting angle. The side cutter knifes consisted of a hydraulic pump, a hydraulic motor, a flow control and a relief valve, a hydraulic hose, a driving equipment and a reciprocating cutter knife. The 18 reciprocating cutter knifes were 137 cm long and knife pitch, knife length and cutting angle were 7.7 cm, 10.5 cm, and $18^{\circ}$. Prototype weight of the rapeseed reaping equipment was heavier by 272 kg when compared with the manual reaping equipments. Load distributions of left and right side showed 50% and 49%, and those of front and rear side showed 64% and 36%. Static turn-over angles in left and right of the prototype were $38.1^{\circ}$ and $38.7^{\circ}$, respectively. The designed prototype rapeseed reaping equipment was properly mounted at the front of a conventional combine.

Development of a Rapeseed Reaping Equipment Attachable to a Conventional Combine (II) - Evaluation of Feasibility in Rapeseed Harvesting - (보통형 콤바인 부착용 유채 예취장치 개발(II) - 유채 수확 적응성 평가 -)

  • Lee, Choung-Keun;Choi, Yong;Jang, Young-Seok;Jung, Young-Su;Lee, Seung-Kyu;Lee, Wang-Don
    • Journal of Biosystems Engineering
    • /
    • v.34 no.1
    • /
    • pp.21-29
    • /
    • 2009
  • A rapeseed reaping equipment attachable to a conventional combine was developed in order to harvest rapeseed for bio-diesel materials. This study was carried out to measure the harvest feasibility of a prototype combine in rapeseed fields. Grain, stem and pod flow rate, grain qualities (whole kernel, damaged kernel, unhulled kernel, material-other-than-grain) and grain loss rates (header, threshing, separation) were investigated in each field test. As the result of the fold test, the average grain flow rates of SUNMANG and MS varieties showed 1,430 kg/h and 2,038 kg/h, respectively. The average stem and pod flow rates showed 3,443 kg/h and 6,596 kg/h, respectively. In each working speed, the average whole kernel rate and the material-other-than-grain showed 99.9% and below 0.08%, respectively. In the average grain loss, the rates showed 5.66% in case of SUNMANG and 5.94% in MS. Header loss was higher than other parts for SUNMANG. However, threshing loss was relatively higher than other parts for MS. Header loss rate due to side cutter knifes, however, was not so high when compared with a grain loss due to the cutter bar. Effective field capacity and field efficiency of the prototype combine showed 0.389 ha/h and 44%, respectively. Comparison of customary combine with the prototype combine through field test demonstrated that the header loss was reduced by 69.3% when the prototype combine was used.

Development of a Rapeseed Reaping Equipment Attachable to a Conventional Combine (Ill) - Analysis of Principal Factor for Loss Reduction of Rapeseed Mechanical Harvesting - (보통형 콤바인 부착용 유채 예취장치 개발 (III) - 유채 기계 수확 손실 절감을 위한 요인 구명 -)

  • Lee, C.K.;Choi, Y.;Jun, H.J.;Lee, S.K.;Moon, S.D.;Kim, S.S.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.2
    • /
    • pp.114-119
    • /
    • 2009
  • Field test was conducted to investigate primary factors reducing rapeseed harvesting using a reciprocating cutter-bar of combine. The results showed that the correlation between crop moisture content and yield loss had a U-type, which indicated that the yield reduction increased at too high and too low crop moisture contents. The proper ranges of crop moisture contents were 27${\sim}$35%, 21${\sim}$56%, and 62${\sim}$73% in case of grain, pod and stem, respectively. Crop moisture content was negatively correlated with header loss, but positively correlated with threshing loss. In contrary, stem moisture content showed positive correlations with total loss, threshing loss and separation loss. Working speed was positively correlated with header loss. Total flow rate, pod flow rate and stem flow rate were highly correlated with threshing loss and separation loss. However, grain flow rate did not show any correlation with total loss. According to the principal component analysis, two principal components were derived as components with eigenvalues greater than 1.0. The contribution rates of the first and the second components were 52.7% and 38.9%, which accounted for 91.6% of total variance. As a contributive factor influencing total loss of rapeseed mechanical harvesting, a crop moisture content factor was greater than a crop flow rate factor. The stepwise multiple regression analysis for total loss was conducted using crop moisture content factor, crop flow rate factor and coefficient. However, the model did not show any correlation among independent and dependent factors ($R^2$=0.060).