• Title/Summary/Keyword: Ranking SVM

Search Result 10, Processing Time 0.024 seconds

Tightly Coupled Integration of Ranking SVM and RDBMS (랭킹 SVM과 RDBMS의 밀결합 통합)

  • Song, Jae-Hwan;Oh, Jin-Oh;Yang, Eun-Seok;Yu, Hwan-Jo
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.247-253
    • /
    • 2009
  • Rank learning and processing have gained much attention in the IR and data mining communities for the last decade. While other data mining techniques such as classification and regression have been actively researched to interoperate with RDBMS by using the tightly coupled or loose coupling approaches, ranking has been researched independently without integrating into RDBMS. This paper proposes a tightly coupled integration of the Ranking SVM into MySQL in order to perform the rank learning task efficiently within the RDBMS. We implemented new SQL commands for learning ranking functions and predicting ranking scores. We evaluated our tightly coupled integration of Ranking SVM by comparing it to a loose coupling implementation. The experiment results show that our approach has a performance improvement of $10{\sim}40%$ in the training phase and 60% in the prediction phase.

Determination of Intrusion Log Ranking using Inductive Inference (귀납 추리를 이용한 침입 흔적 로그 순위 결정)

  • Ko, Sujeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Among the methods for extracting the most appropriate information from a large amount of log data, there is a method using inductive inference. In this paper, we use SVM (Support Vector Machine), which is an excellent classification method for inductive inference, in order to determine the ranking of intrusion logs in digital forensic analysis. For this purpose, the logs of the training log set are classified into intrusion logs and normal logs. The associated words are extracted from each classified set to generate a related word dictionary, and each log is expressed as a vector based on the generated dictionary. Next, the logs are learned using the SVM. We classify test logs into normal logs and intrusion logs by using the log set extracted through learning. Finally, the recommendation orders of intrusion logs are determined to recommend intrusion logs to the forensic analyst.

Collaborative Similarity Metric Learning for Semantic Image Annotation and Retrieval

  • Wang, Bin;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1252-1271
    • /
    • 2013
  • Automatic image annotation has become an increasingly important research topic owing to its key role in image retrieval. Simultaneously, it is highly challenging when facing to large-scale dataset with large variance. Practical approaches generally rely on similarity measures defined over images and multi-label prediction methods. More specifically, those approaches usually 1) leverage similarity measures predefined or learned by optimizing for ranking or annotation, which might be not adaptive enough to datasets; and 2) predict labels separately without taking the correlation of labels into account. In this paper, we propose a method for image annotation through collaborative similarity metric learning from dataset and modeling the label correlation of the dataset. The similarity metric is learned by simultaneously optimizing the 1) image ranking using structural SVM (SSVM), and 2) image annotation using correlated label propagation, with respect to the similarity metric. The learned similarity metric, fully exploiting the available information of datasets, would improve the two collaborative components, ranking and annotation, and sequentially the retrieval system itself. We evaluated the proposed method on Corel5k, Corel30k and EspGame databases. The results for annotation and retrieval show the competitive performance of the proposed method.

An Experimental Study on Feature Ranking Schemes for Text Classification (텍스트 분류를 위한 자질 순위화 기법에 관한 연구)

  • Pan Jun Kim
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.1
    • /
    • pp.1-21
    • /
    • 2023
  • This study specifically reviewed the performance of the ranking schemes as an efficient feature selection method for text classification. Until now, feature ranking schemes are mostly based on document frequency, and relatively few cases have used the term frequency. Therefore, the performance of single ranking metrics using term frequency and document frequency individually was examined as a feature selection method for text classification, and then the performance of combination ranking schemes using both was reviewed. Specifically, a classification experiment was conducted in an environment using two data sets (Reuters-21578, 20NG) and five classifiers (SVM, NB, ROC, TRA, RNN), and to secure the reliability of the results, 5-Fold cross-validation and t-test were applied. As a result, as a single ranking scheme, the document frequency-based single ranking metric (chi) showed good performance overall. In addition, it was found that there was no significant difference between the highest-performance single ranking and the combination ranking schemes. Therefore, in an environment where sufficient learning documents can be secured in text classification, it is more efficient to use a single ranking metric (chi) based on document frequency as a feature selection method.

Performance Improvement Methods of a Spoken Chatting System Using SVM (SVM을 이용한 음성채팅시스템의 성능 향상 방법)

  • Ahn, HyeokJu;Lee, SungHee;Song, YeongKil;Kim, HarkSoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.6
    • /
    • pp.261-268
    • /
    • 2015
  • In spoken chatting systems, users'spoken queries are converted to text queries using automatic speech recognition (ASR) engines. If the top-1 results of the ASR engines are incorrect, these errors are propagated to the spoken chatting systems. To improve the top-1 accuracies of ASR engines, we propose a post-processing model to rearrange the top-n outputs of ASR engines using a ranking support vector machine (RankSVM). On the other hand, a number of chatting sentences are needed to train chatting systems. If new chatting sentences are not frequently added to training data, responses of the chatting systems will be old-fashioned soon. To resolve this problem, we propose a data collection model to automatically select chatting sentences from TV and movie scenarios using a support vector machine (SVM). In the experiments, the post-processing model showed a higher precision of 4.4% and a higher recall rate of 6.4% compared to the baseline model (without post-processing). Then, the data collection model showed the high precision of 98.95% and the recall rate of 57.14%.

Machine Learning Based Stock Price Fluctuation Prediction Models of KOSDAQ-listed Companies Using Online News, Macroeconomic Indicators, Financial Market Indicators, Technical Indicators, and Social Interest Indicators (온라인 뉴스와 거시경제 지표, 금융 지표, 기술적 지표, 관심도 지표를 이용한 코스닥 상장 기업의 기계학습 기반 주가 변동 예측)

  • Kim, Hwa Ryun;Hong, Seung Hye;Hong, Helen
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.448-459
    • /
    • 2021
  • In this paper, we propose a method of predicting the next-day stock price fluctuations of 10 KOSDAQ-listed companies in 5G, autonomous driving, and electricity sectors by training SVM, XGBoost, and LightGBM models from macroeconomic·financial market indicators, technical indicators, social interest indicators, and daily positive indices extracted from online news. In the three experiments to find out the usefulness of social interest indicators and daily positive indices, the average accuracy improved when each indicator and index was added to the models. In addition, when feature selection was performed to analyze the superiority of the extracted features, the average importance ranking of the social interest indicator and daily positive index was 5.45 and 1.08, respectively, it showed higher importance than the macroeconomic financial market indicators and technical indicators. With the results of these experiments, we confirmed the effectiveness of the social interest indicators as alternative data and the daily positive index for predicting stock price fluctuation.

Prediction of uplift capacity of suction caisson in clay using extreme learning machine

  • Muduli, Pradyut Kumar;Das, Sarat Kumar;Samui, Pijush;Sahoo, Rupashree
    • Ocean Systems Engineering
    • /
    • v.5 no.1
    • /
    • pp.41-54
    • /
    • 2015
  • This study presents the development of predictive models for uplift capacity of suction caisson in clay using an artificial intelligence technique, extreme learning machine (ELM). Other artificial intelligence models like artificial neural network (ANN), support vector machine (SVM), relevance vector machine (RVM) models are also developed to compare the ELM model with above models and available numerical models in terms of different statistical criteria. A ranking system is presented to evaluate present models in identifying the 'best' model. Sensitivity analyses are made to identify important inputs contributing to the developed models.

Text Categorization Using TextRank Algorithm (TextRank 알고리즘을 이용한 문서 범주화)

  • Bae, Won-Sik;Cha, Jeong-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.110-114
    • /
    • 2010
  • We describe a new method for text categorization using TextRank algorithm. Text categorization is a problem that over one pre-defined categories are assigned to a text document. TextRank algorithm is a graph-based ranking algorithm. If we consider that each word is a vertex, and co-occurrence of two adjacent words is a edge, we can get a graph from a document. After that, we find important words using TextRank algorithm from the graph and make feature which are pairs of words which are each important word and a word adjacent to the important word. We use classifiers: SVM, Na$\ddot{i}$ve Bayesian classifier, Maximum Entropy Model, and k-NN classifier. We use non-cross-posted version of 20 Newsgroups data set. In consequence, we had an improved performance in whole classifiers, and the result tells that is a possibility of TextRank algorithm in text categorization.

Grading System of Movie Review through the Use of An Appraisal Dictionary and Computation of Semantic Segments (감정어휘 평가사전과 의미마디 연산을 이용한 영화평 등급화 시스템)

  • Ko, Min-Su;Shin, Hyo-Pil
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.4
    • /
    • pp.669-696
    • /
    • 2010
  • Assuming that the whole meaning of a document is a composition of the meanings of each part, this paper proposes to study the automatic grading of movie reviews which contain sentimental expressions. This will be accomplished by calculating the values of semantic segments and performing data classification for each review. The ARSSA(The Automatic Rating System for Sentiment analysis using an Appraisal dictionary) system is an effort to model decision making processes in a manner similar to that of the human mind. This aims to resolve the discontinuity between the numerical ranking and textual rationalization present in the binary structure of the current review rating system: {rate: review}. This model can be realized by performing analysis on the abstract menas extracted from each review. The performance of this system was experimentally calculated by performing a 10-fold Cross-Validation test of 1000 reviews obtained from the Naver Movie site. The system achieved an 85% F1 Score when compared to predefined values using a predefined appraisal dictionary.

  • PDF

A Study on the Effect of Network Centralities on Recommendation Performance (네트워크 중심성 척도가 추천 성능에 미치는 영향에 대한 연구)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.23-46
    • /
    • 2021
  • Collaborative filtering, which is often used in personalization recommendations, is recognized as a very useful technique to find similar customers and recommend products to them based on their purchase history. However, the traditional collaborative filtering technique has raised the question of having difficulty calculating the similarity for new customers or products due to the method of calculating similaritiesbased on direct connections and common features among customers. For this reason, a hybrid technique was designed to use content-based filtering techniques together. On the one hand, efforts have been made to solve these problems by applying the structural characteristics of social networks. This applies a method of indirectly calculating similarities through their similar customers placed between them. This means creating a customer's network based on purchasing data and calculating the similarity between the two based on the features of the network that indirectly connects the two customers within this network. Such similarity can be used as a measure to predict whether the target customer accepts recommendations. The centrality metrics of networks can be utilized for the calculation of these similarities. Different centrality metrics have important implications in that they may have different effects on recommended performance. In this study, furthermore, the effect of these centrality metrics on the performance of recommendation may vary depending on recommender algorithms. In addition, recommendation techniques using network analysis can be expected to contribute to increasing recommendation performance even if they apply not only to new customers or products but also to entire customers or products. By considering a customer's purchase of an item as a link generated between the customer and the item on the network, the prediction of user acceptance of recommendation is solved as a prediction of whether a new link will be created between them. As the classification models fit the purpose of solving the binary problem of whether the link is engaged or not, decision tree, k-nearest neighbors (KNN), logistic regression, artificial neural network, and support vector machine (SVM) are selected in the research. The data for performance evaluation used order data collected from an online shopping mall over four years and two months. Among them, the previous three years and eight months constitute social networks composed of and the experiment was conducted by organizing the data collected into the social network. The next four months' records were used to train and evaluate recommender models. Experiments with the centrality metrics applied to each model show that the recommendation acceptance rates of the centrality metrics are different for each algorithm at a meaningful level. In this work, we analyzed only four commonly used centrality metrics: degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. Eigenvector centrality records the lowest performance in all models except support vector machines. Closeness centrality and betweenness centrality show similar performance across all models. Degree centrality ranking moderate across overall models while betweenness centrality always ranking higher than degree centrality. Finally, closeness centrality is characterized by distinct differences in performance according to the model. It ranks first in logistic regression, artificial neural network, and decision tree withnumerically high performance. However, it only records very low rankings in support vector machine and K-neighborhood with low-performance levels. As the experiment results reveal, in a classification model, network centrality metrics over a subnetwork that connects the two nodes can effectively predict the connectivity between two nodes in a social network. Furthermore, each metric has a different performance depending on the classification model type. This result implies that choosing appropriate metrics for each algorithm can lead to achieving higher recommendation performance. In general, betweenness centrality can guarantee a high level of performance in any model. It would be possible to consider the introduction of proximity centrality to obtain higher performance for certain models.