• Title/Summary/Keyword: Ranging sonar

Search Result 30, Processing Time 0.02 seconds

Performance Analysis of a Criterion to Verify the Consistency of Measured Angles of Towed Array and Frank Array (예인 선 배열 소나와 선측 배열 소나의 방위각 측정값의 일관성 판별기법의 성능분석)

  • Park, Hyun-Woo;Jung, Tae-Jin;Kwon, Bum-Soo;Lee, Kyun-Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.188-195
    • /
    • 2010
  • Unlike using a single sonar platform, using two different sonar platforms can lead to a considerable increase of acoustic aperture in Passive Ranging Sonar(PRS). Values measured from two sonar platforms shall be consistent in order to allow us to rely on such improved aperture. However, obtaining consistent values from a towed array and a frank array is not always simple due to the heading error occurring at towed array. The objective of this paper is to verify a new criterion analyzing the consistency in the measured values of towed array and frank array through computer simulations.

Study on Seabed Mapping using Two Sonar Devices for AUV Application (복수의 수중 소나를 활용한 수중 로봇의 3차원 지형 맵핑에 관한 연구)

  • Joe, Hangil;Yu, Son-Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.94-102
    • /
    • 2021
  • This study addresses a method for 3D reconstruction using acoustic data with heterogeneous sonar devices: Forward-Looking Multibeam Sonar (FLMS) and Profiling Sonar (PS). The challenges in sonar image processing are perceptual ambiguity, the loss of elevation information, and low signal to noise ratio, which are caused by the ranging and intensity-based image generation mechanism of sonars. The conventional approaches utilize additional constraints such as Lambertian reflection and redundant data at various positions, but they are vulnerable to environmental conditions. Our approach is to use two sonars that have a complementary data type. Typically, the sonars provide reliable information in the horizontal but, the loss of elevation information degrades the quality of data in the vertical. To overcome the characteristic of sonar devices, we adopt the crossed installation in such a way that the PS is laid down on its side and mounted on the top of FLMS. From the installation, FLMS scans horizontal information and PS obtains a vertical profile of the front area of AUV. For the fusion of the two sonar data, we propose the probabilistic approach. A likelihood map using geometric constraints between two sonar devices is built and a monte-carlo experiment using a derived model is conducted to extract 3D points. To verify the proposed method, we conducted a simulation and field test. As a result, a consistent seabed map was obtained. This method can be utilized for 3D seabed mapping with an AUV.

A study on wideband underwater acoustic signal amplifier design for generating multi-frequency (다중 주파수 재생을 위한 광대역 수중 음향 신호 증폭기 설계 연구)

  • Lee, Dong-Hun;Yoo, Seung-Jin;Kim, Hyeong-Moon;Kim, Hyoung-Nam
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.179-185
    • /
    • 2017
  • The problem that occurred in the design/fabrication/testing of the wideband transmitting power amplifier for an embedded active SONAR (Sound Navigation and Ranging) system operating underwater was analyzed and the solution of the problem was proposed in this paper. Wideband acoustic SONAR systems had been developed in order to improve the underwater detection performance. The underwater acoustic transmission system had been also developed to achieve the wideband SONAR system. In this paper, the wideband acoustic transmission signal was generated using a 2 Level sawtooth type Class D PWM (Pulse Width Modulation) which was not complicated to implement. When the sonar signals having two or more frequencies were simultaneously generated, parasitic frequencies were added to the original signals by integer multiples of the frequency difference of the original signal. To cope with this problem, we proposed a way to remove the parasitic frequency from the source signal through modeling and simulation of the implemented power amplifier and PWM control hardware using MATLAB and Simulink.

Position error estimation of sub-array in passive ranging sonar based on a genetic algorithm (유전자 알고리즘 기반의 수동측거소나 부배열 위치오차 추정)

  • Eom, Min-Jeong;Kim, Do-Young;Park, Gyu-Tae;Shin, Kee-Cheol;Oh, Se-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.630-636
    • /
    • 2019
  • Passive Ranging Sonar (PRS) is a type of passive sonar consisting of three sub-array on the port and starboard, and has a characteristic of detecting a target and calculating a bearing and a distance. The bearing and distance calculation requires physical sub-array position information, and the bearing and distance accuracy performance are deteriorated when the position information of the sub-array is inaccurate. In particular, it has a greater impact on distance accuracy performance using plus value of two time-delay than a bearing using average value of two time-delay. In order to improve this, a study on sub-array position error estimation and error compensation is needed. In this paper, We estimate the sub-array position error based on enetic algorithm, an optimization search technique, and propose a method to improve the performance of distance accuracy by compensating the time delay error caused by the position error. In addition, we will verify the proposed algorithm and its performance using the sea-going data.

Underwater Acoustic Research Trends with Machine Learning: Passive SONAR Applications

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.227-236
    • /
    • 2020
  • Underwater acoustics, which is the domain that addresses phenomena related to the generation, propagation, and reception of sound waves in water, has been applied mainly in the research on the use of sound navigation and ranging (SONAR) systems for underwater communication, target detection, investigation of marine resources and environment mapping, and measurement and analysis of sound sources in water. The main objective of remote sensing based on underwater acoustics is to indirectly acquire information on underwater targets of interest using acoustic data. Meanwhile, highly advanced data-driven machine-learning techniques are being used in various ways in the processes of acquiring information from acoustic data. The related theoretical background is introduced in the first part of this paper (Yang et al., 2020). This paper reviews machine-learning applications in passive SONAR signal-processing tasks including target detection/identification and localization.

Development of LiDAR and SBES data Merging Program for Calculation of Water Volume (수량계산을 위한 LiDAR와 SBES데이터 통합프로그램 개발에 관한 연구)

  • Oh Yoon-Seuk;Bae Sang-Keun;Kim Byung-Guk
    • Spatial Information Research
    • /
    • v.13 no.2 s.33
    • /
    • pp.157-166
    • /
    • 2005
  • LiDAR(Light Detection And Ranging) can make terrain model where above the ground and the mixed data between SBES(Single Beam Echo Sounder) and SSS(Side Scan Sonar) can make terrain model where bottom of water. So this research suggest that how to merge data which are got ken different devices and we developed the software which can display 2D/3D graphic and water volume calculation. And we compared accuracy between the commercial software'Surfer'and LiDAR and SBES data Merging Program.

  • PDF

Target Detection Algorithm of Sidescan Sonar imagery based on GLCM(Gray Level Co-occurrence Matrix) (GLCM을 기반으로 한 사이드 스캔 소나 영상의 목표물 탐색 알고리즘)

  • 조영건;박요섭;김학일
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.308-315
    • /
    • 2002
  • 해양구조물 설치(Offshore Engineering)에 대한 수요가 급증함에 따라 보다 정확한 설계와 시공을 위한 해저지형 및 지질환경에 대한 탐사(Geophysical Survey)수요가 급격히 증가하고 있다. 전자기파의 감쇄가 심한 해수로 덮여 있는 해저에 대한원격탐사 매체로는 SONAR(SOund Navigation And Ranging)시스템이 일반적으로 이용되고 있다. (중략)

  • PDF

Fast Wideband Active Detection and Doppler Estimation Using the Extended Replica of an HFM Pulse in Active SONAR Systems (능동 소나 시스템에서 HFM 펄스의 확장 레플리카 상관기를 이용한 고속 광대역 능동탐지 및 도플러 추정 기법)

  • Shin, Jong-Woo;Kim, Wan-Jin;Do, Dae-Won;Lee, Dong-Hun;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.11-19
    • /
    • 2014
  • In recent SONAR (sound navigation and ranging) systems, wideband active SONAR systems has received more attention than narrowband SONAR systems due to the remarkable detection performance in terms of range resolution. However, the wideband SONAR systems usually requires a huge amount of computational burden in order to achieve their own superiority. To cope with this drawback of the wideband SONAR systems, this paper proposes a fast target detection and velocity estimation method using an extended replica in wideband hyperbolic frequency modulation active SONAR system. Computer simulation shows that the proposed method can be implemented by a highly reduced computational complexity with a little performance degradation in target detection and velocity estimation compared to the conventional filter bank method.

Research of Remote Inspection Method for River Bridge using Sonar and visual system (수중초음파와 광학영상의 하이브리드 시스템을 이용한 교각 수중부 원격점검 기법 연구)

  • Jung, Ju-Yeong;Yoon, Hyuk-Jin;Cho, Hyun-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.330-335
    • /
    • 2017
  • This study applied SONAR(Sound Navigation And Ranging) to the inspection and evaluation of underwater structures. Anactual river bridge was chosen for inspection and evaluation. SONAR and an optical camera were operated together to analyze the underwater image of the bridge. SONAR images were obtained by various methods to remove the environmental variables from the field experiment, and it was confirmed that the reliability of detecting damaged areas on piers was decreased when using SONAR alone. The SONAR equipment and the optical camera can be used simultaneously to overcome the limitations of SONAR in inspecting underwater structures.These results can be used as basic data for the development of similar technologies for underwater structure inspection.

Concurrent Mapping and Localization using Range Sonar in Small AUV, SNUUVI

  • Hwang Arom;Seong Woojae;Choi Hang Soon;Lee Kyu Yuel
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.4
    • /
    • pp.23-34
    • /
    • 2005
  • Increased usage of AUVs has led to the development of alternative navigational methods that use the acoustic beacons and dead reckoning. This paper describes a concurrent mapping and localization (CML) scheme that uses range sonars mounted on SNUUV­I, which is a small test AUV developed by Seoul National University. The CML is one of such alternative navigation methods for measuring the environment that the vehicle is passing through. In addition, it is intended to provide relative position of AUV by processing the data from sonar measurements. A technique for CML algorithm which uses several ranging sonars is presented. This technique utilizes an extended Kalman filter to estimate the location of the AUV. In order for the algorithm to work efficiently, the nearest neighbor standard filter is introduced as the algorithm of data association in the CML for associating the stored targets the sonar returns at each time step. The proposed CML algorithm is tested by simulations under various conditions. Experiments in a towing tank for one dimensional navigation are conducted and the results are presented. The results of the simulation and experiment show that the proposed CML algorithm is capable of estimating the position of the vehicle and the object and demonstrates that the algorithm will perform well in the real environment.