• Title/Summary/Keyword: Range-Doppler Algorithm

Search Result 68, Processing Time 0.023 seconds

Range Walk Compensated Squint Cross-Range Doppler Processing in Bistatic Radar (바이스태틱 레이더에서 Range Walk이 보상된 Squint Cross-Range 도플러 프로세싱)

  • Youn, Jae-Hyuk;Kim, Kwan-Soo;Yang, Hoon-Gee;Chung, Yong-Seek;Lee, Won-Woo;Bae, Kyung-Bin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1141-1144
    • /
    • 2011
  • Range walk has been a major problem in achieving correct Doppler processing. This frequently occurs when range variation is severe just like in a bistatic radar or in high speed target scenario. This paper presents a range walk compensated range-Doppler processing algorithm applicable to the bistatic radar. In order for the compensation, a range-domain interpolation is applied for range compressed signal so that Doppler processing is performed along the evenly time-spaced range bins that contain target returns. Under a bistatic radar scenario, the proposed algorithm including a range domain pulse compression is mathematically described. Finally, the validity of the algorithm is demonstrated by simulation results showing the superiority of a SCDP(Squint Cross-range Doppler Processing) over an uncompensated Doppler processing.

Performance Analysis of the Inversion Schemes in the Spotlight-mode SAR(Synthetic Aperture Radar) (Spotlight-mode SAR(Synthetic Aperture Radar)에서의 Inversion 기법 성능 분석)

  • 최정희
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.130-138
    • /
    • 2003
  • The classical image reconstruction for stripmap-mode Synthetic Aperture Radar is the Range-Doppler algorithm. When the spotlight-mode SAR system was envisioned, Range-Doppler algorithm turned out to fail rapidly in this SAR imaging modality. Thus, what is referred to as Polar format algorithm, which is based on the Plane wave approximation, was introduced for imaging from spotlight-mode SAR raw- data. In this paper, we have studied for the raw data processing schemes in the spotlight-mode Synthetic Aperture Radar. We apply the Wavefront Reconstruction scheme that does not utilize the approximation in spotlight-mode SAR imaging modelity, and compare the performance of target imaging with the Polar format inversion scheme.

Doppler Frequency Compensated Detection and Ranging Algorithm for High-speed Targets (도플러 주파수가 보상된 고속 표적 탐지 및 레인징 알고리즘)

  • Youn, Jae-Hyuk;Kim, Kwan-Soo;Yang, Hoon-Gee;Chung, Young-Seek;Lee, Won-Woo;Bae, Kyung-Bin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12B
    • /
    • pp.1244-1250
    • /
    • 2010
  • This paper presents a detection and ranging algorithm for a high-speed targets in the high PRF radar. We show, unlike the conventional methods, it firstly estimates Doppler frequency with a quasi-periodic pulse train prior to range processing. The estimated Doppler frequency can compensate the phase error enbeded in the received signal, which makes the signal integrated coherently in the range direction and localizes the target's signiture in low SNR. We present the derivation of the proposed algorithm and discuss how the system parameters such as the range/Doppler sampling condition, processing time and Doppler estimation error affect the performance of the proposed algorithm, which is verified by simulations.

Development of a GB-SAR (II) : Focusing Algorithms (GB-SAR의 개발 (II) : 영상화 기법)

  • Lee, Hoon-Yol;Sung, Nak-Hoon;Kim, Jung-Ho;Cho, Seong-Jun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.247-256
    • /
    • 2007
  • In this paper we introduced GB-SAR focusing algorithms for image formation and suggested an optimized solution. We compared the characteristics, advantages, and limitations of the Deramp-FFT (DF) algorithm and the Range-Doppler (RD) algorithm in terms of their image formation principles, memory usage and processing time. We found that DF algorithm is efficient in memory and processing time but can not focus the near range. The RD algorithm can focus the entire range but, considering the refinement on the rail length, it has much redundancy in memory and processing time. In conclusion, we optimized the GB-SAR focusing by using the DF algorithm for a far-range case and the RD algorithm for a near-range case separately.

Developement of Efficient Algorithm to Eliminate Aliasing of Ultrasonic Pulsed Wave Doppler Signal (초음파 Pulsed Wave 도플러 신호의 Aliasing 제거를 위한 효율적인 알고리즘 개발)

  • Kim, G.D.;Hwang, J.S.;Ahn, Y.B.;Song, T.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.213-214
    • /
    • 1998
  • The important role of the ultrasonic Doppler system in the modem clinical medicine is to provide the clinical information of the vascular system. The ultrasonic pulsed wave(PW) Doppler system, a kind of the ultrasound Doppler system, is more available than the ultrasonic continuous wave(CW) Doppler system because it can evaluate the velocity and the direction of blood flow as well as the depth of vessel. However, the ultrasonic PW Doppler system has the disadvantage that the range of evaluating velocity of blood flow is limited(Nyquist limit). In order to solve this limit, we propose the algorithm for eliminating this aliasing in this paper. In addition, we propose the efficient signal processing algorithm.

  • PDF

Computational performance and accuracy of compressive sensing algorithms for range-Doppler estimation (거리-도플러 추정을 위한 압축 센싱 알고리즘의 계산 성능과 정확도)

  • Lee, Hyunkyu;Lee, Keunhwa;Hong, Wooyoung;Lim, Jun-Seok;Cheong, Myoung-Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.534-542
    • /
    • 2019
  • In active SONAR, several different methods are used to detect range-Doppler information of the target. Compressive sensing based method is more accurate than conventional methods and shows superior performance. There are several compressive sensing algorithms for range-Doppler estimation of active sonar. The ability of each algorithm depends on algorithm type, mutual coherence of sensing matrix, and signal to noise ratio. In this paper, we compared and analyzed computational performance and accuracy of various compressive sensing algorithms for range-Doppler estimation of active sonar. The performance of OMP (Orthogonal Matching Pursuit), CoSaMP (Compressive Sampling Matching Pursuit), BPDN (CVX) (Basis Pursuit Denoising), LARS (Least Angle Regression) algorithms is respectively estimated for varying SNR (Signal to Noise Ratio), and mutual coherence. The optimal compressive sensing algorithm is presented according to the situation.

Development and Distribution of an Educational Synthetic Aperture Radar(eSAR) Processor (교육용 합성구경레이더 프로세서(eSAR Processor)의 개발과 공개)

  • Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.2
    • /
    • pp.163-171
    • /
    • 2005
  • I have developed a processor for synthetic aperture radar (SAR) raw data compression using range-doppler algorithm for educational purpose. The program realized a generic SAR focusing algorithm so that it can deal with any SAR system if the specification is known. It can run efficiently on a low-cost computer by selecting minimum size out of a whole dataset, and can produce intermediate images during the process. Especially, the program is designed for educational purpose in such a way that Doppler centroid and azimuth ambiguity can be determined graphically by the user. By distributing the source code and the algorithm to public, I intend to maximize the educational effect on understanding and utilizing SAR data. This paper introduces the principle of SAR focusing algorithm embedded on the eSAR processor and shows an example of data processing using ERS-1 raw data.

FPGA-Based Acceleration of Range Doppler Algorithm for Real-Time Synthetic Aperture Radar Imaging (실시간 SAR 영상 생성을 위한 Range Doppler 알고리즘의 FPGA 기반 가속화)

  • Jeong, Dongmin;Lee, Wookyung;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.634-643
    • /
    • 2021
  • In this paper, an FPGA-based acceleration scheme of range Doppler algorithm (RDA) is proposed for the real time synthetic aperture radar (SAR) imaging. Hardware architectures of matched filter based on systolic array architecture and a high speed sinc interpolator to compensate range cell migration (RCM) are presented. In addition, the proposed hardware was implemented and accelerated on Xilinx Alveo FPGA. Experimental results for 4096×4096-size SAR imaging showed that FPGA-based implementation achieves 2 times acceleration compared to GPU-based design. It was also confirmed the proposed design can be implemented with 60,247 CLB LUTs, 103,728 CLB registers, 20 block RAM tiles and 592 DPSs at the operating frequency of 312 MHz.

GPU Acceleration of Range Doppler Algorithm for Real-Time SAR Image Generation (실시간 SAR 영상 생성을 위한 Range Doppler Algorithm의 GPU 가속)

  • Dong-Min Jeong;Woo-Kyung Lee;Myeong-Jin Lee;Yun-Ho Jung
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.265-272
    • /
    • 2023
  • In this paper, a GPU-accelerated kernel of range Doppler algorithm (RDA) was developed for real-time image formation based on frequency modulated continuous wave (FMCW) synthetic aperture radar (SAR). A pinned memory was used to minimize the data transfer time between the host and the GPU device, and the kernel was configured to perform all RDA operations on the GPU to minimize the number of data transfers. The dataset was obtained through the FMCW drone SAR experiment, and the GPU acceleration effect was measured in an intel i7-9700K CPU, 32GB RAM, and Nvidia RTX 3090 GPU environment. Including the data transfer time between host and devices, it was measured to be accelerated up to 3.41 times compared to the CPU, and when only the acceleration effect of operation was measured without including the data transfer time, it was confirmed that it could be accelerated up to 156 times.

A Helicopter-borne Pulse Doppler Radar Signal Processor Development (헬기탑재 펄스 도플러 레이다 신호처리기 개발)

  • Kwag, Young-Kil;Jeun, In-Pyung;Choi, Min-Su;Hwang, Gwang-Yeon;Lee, Kang-Hoon;Lee, Jae-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.443-446
    • /
    • 2005
  • This paper presents the results of the design and implementation of the airborne pulse doppler radar signal processor using high multi-DSP for the multi-function radar capability such as short-range, midium-range, and long-range depending on the mission of the vehicle. Particularly, the radar signal processor is developed using two DSP boards in parallel for the various radar signal processing algorithm. The key algorithms include LFM chirp waveform-based pulse compression, MTI clutter filter, MTD processor, adaptive CFAR, and clutter map. Especially airborne moving clutter Doppler spectrum compensation algorithm such as TACCAR is implemented for the multi-mode airborne radar system. The test results shows the good Doppler spectral separation for the clutter and the moving target in the flight test environment using helicopter

  • PDF