• Title/Summary/Keyword: Range of motions

Search Result 366, Processing Time 0.023 seconds

Numerical and experimental investigation on the global performance of a novel design of a Low Motion FPSO

  • Peng, Cheng;Mansour, Alaa M.;Wu, Chunfa;Zuccolo, Ricardo;Ji, Chunqun;Greiner, Bill;Sung, Hong Gun
    • Ocean Systems Engineering
    • /
    • v.8 no.4
    • /
    • pp.427-439
    • /
    • 2018
  • Floating Production Storage and Offloading (FPSO) units have the advantages of their ability to provide storage and offloading capabilities which are not available in other types of floating production systems. In addition, FPSOs also provide a large deck area and substantial topsides payload capacity. They are in use in a variety of water depths and environments around the world. It is a good solution for offshore oil and gas development in fields where there is lack of an export pipeline system to shore. However due to their inherently high motions in waves, they are limited in the types of risers they can host. The Low Motion FPSO (LM-FPSO) is a novel design that is developed to maintain the advantages of the conventional FPSOs while offering significantly lower motion responses. The LM-FPSO design generally consists of a box-shape hull with large storage capacity, a free-hanging solid ballast tank (SBT) located certain distance below the hull keel, a few groups of tendons arranged to connect the SBT to the hull, a mooring system for station keeping, and a riser system. The addition of SBT to the floater results in a significant increase in heave, roll and pitch natural periods, mainly through the mass and added mass of the SBT, which significantly reduces motions in the wave frequency range. Model tests were performed at the Korea Research Institute of Ships & Ocean Engineering (KRISO) in the fall of 2016. An analytical model of the basin model (MOM) was created in Orcaflex and calibrated against the basin-model. Good agreement is achieved between global performance results from MOM's predictions and basin model measurements. The model test measurements have further verified the superior motion response of LM-FPSO. In this paper, numerical results are presented to demonstrate the comparison and correlation of the MOM results with model test measurements. The verification of the superior motion response through model test measurements is also presented in this paper.

The Characteristics of Motion Response of Stern Trawlers according to the Wave Height and the Ship's Speed in the Sea (선미식(船尾式) 트롤선(船)의 해양항행중(海洋航行中) 파고(波高)와 선속(船速)에 따른 선체(船体) 동요특성(動搖特性))

  • Kang, Il-Kwon;Park, Byung-Soo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.12 no.2
    • /
    • pp.199-212
    • /
    • 2000
  • It is very important to investigate the hull response of a fishing vessel in the sea to ensure the safe navigation and fishing operation in rough sea by preserving excellent sea keeping qualities. For this purpose, the author measured various responses of three stem trawlers in waves using real sea experimental measuring system. The author analyzed the experimental data using the statistical and spectral analyzing method to get the characteristics of the motion responses of the vessels according to the wave height and the ship's speed. The results obtained can be summarized as follows ; (1) Rather higher response of the pitch motion due to the wave height appeared in the head sea and the bow sea than any other wave direction without relevance to ship's size. In case of the roll motion, the beam sea and the quartering sea have a high response value. The period of peak of the pitch motion and the roll motion according to the wave height in each vessel has almost same value respectively. (2) The change of response of the pitch motions deeply depend on the ship's speed in the head sea and the bow sea, but not in the other wave direction. (3) The change of response of the roll motions in the beam sea, the quartering sea and the following sea are affected by the influence of the ship's speed in 5k't to 8k't, but not related to the ship's speed in out of that range.

  • PDF

A Study on the Characteristics of Bi-directional Responses by Ground Motions of Moderate Magnitude Earthquakes Recorded in Korea (우리나라에서 계측된 중규모 지진 지반운동의 수평 양방향 응답 특성 분석)

  • Kim, Jung Han;Kim, Jae Kwan;Heo, Tae Min;Lee, Jin Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.269-277
    • /
    • 2019
  • In a seismic design, a structural demand by an earthquake load is determined by design response spectra. The ground motion is a three-dimensional movement; therefore, the design response spectra in each direction need to be assigned. However, in most design codes, an identical design response spectrum is used in two horizontal directions. Unlike these design criteria, a realistic seismic input motion should be applied for a seismic evaluation of structures. In this study, the definition of horizontal spectral acceleration representing the two-horizontal spectral acceleration is reviewed. Based on these methodologies, the horizontal responses of observed ground motions are calculated. The data used in the analysis are recorded accelerograms at the stations near the epicenters of recent earthquakes which are the 2007 Odeasan earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake. Geometric mean-based horizontal response spectra and maximum directional response spectrum are evaluated and their differences are compared over the period range. Statistical representation of the relations between geometric mean and maximum directional spectral acceleration for horizontal direction and spectral acceleration for vertical direction are also evaluated. Finally, discussions and suggestions to consider these different two horizontal directional spectral accelerations in the seismic performance evaluation are presented.

A SEISMIC DESIGN OF NUCLEAR REACTOR BUILDING STRUCTURES APPLYING SEISMIC ISOLATION SYSTEM IN A HIGH SEISMICITY REGION -A FEASIBILITY CASE STUDY IN JAPAN

  • Kubo, Tetsuo;Yamamoto, Tomofumi;Sato, Kunihiko;Jimbo, Masakazu;Imaoka, Tetsuo;Umeki, Yoshito
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.581-594
    • /
    • 2014
  • A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB) is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1) the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2) the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3) the responses of isolated reactor building fall below the range of the prescribed criteria.

The effect of accidental eccentricities on the inelastic torsional response of buildings

  • Georgoussis, George K.;Mamou, Anna
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.145-155
    • /
    • 2020
  • This paper investigates the influence of spatial varations of accidental mass eccentricities on the torsional response of inelastic multistorey reinforced concrete buildings. It complements recent studies on the elastic response of structural buildings and extends the investigation into the inelastic range, with the aim of providing guidelines for minimising the torsional response of structural buildings. Four spatial mass eccentricity configurations of common nine story buildings, along with their reversed mass eccentricities subjected to the Erzincan-1992 and Kobe-1995 ground motions were investigated, and the results are discussed in the context of the structural response of the no eccentricity models. It is demonstrated that when the initial linear response is practically translational, it is maintained into the inelastic phase of deformation as long as the strength assignment of the lateral resisting bents is based on a planar static analysis where the applied lateral loads simulate the first mode of vibration of the uncoupled structure.

A Research on the Added Resistance Due to Wave Reflection (반사파(反射波)의 부가저항(附加抵抗)에 관한 연구(硏究))

  • Y.J.,Kwon
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.1
    • /
    • pp.35-41
    • /
    • 1987
  • An approximate method for calculating added resistance due to regular wave reflection has been established. In order to confirm the applicability of this method, an experimental work was carried out using a Series 60 model with oscillations in the 6-degrees of freedom restricted. Particular attention was paid to the case of the shorter wave length range where the effect of wave reflection is dominant compared to the effects of the ship's motions($\lambda/H=10.6-101.0,\;\lambda/L=0.23-1.18,\;F_n=0.10-0.25$). When comparing the measured and the computed resistance due to wave reflection in a head sea, good agreement is shown. This paper is based on research done by the Author as a member of the Ship Performance Group in the Department of Naval Architecture and Shipbuilding of the University of Newcastle-upon-Tyne in England, under the supervision of Dr. R.L. Townsin.

  • PDF

Treatment for Sport Disability by Proprioceptive Neuromuscular Facilitation Technique (고유수용성 신경근 촉진법에 의하 Sport 장해 환자의 치료)

  • Kim, Tae-Yoon
    • Journal of Korean Physical Therapy Science
    • /
    • v.3 no.4
    • /
    • pp.189-196
    • /
    • 1996
  • The purpose of this review are that what is the concept of sport P. N. F and to give the information about proprioceptive neuromuscular facilitation technique when the sport physical therapy will be needed in field. Technique of proprioceptive neuromuscular facilitation are methods of placing specific demands in order to secure a desired response. Greatest emphasis was placed on the application of optimal resistance throughout the range of motion, using many combinations of motions which were related to primitive patterns and employment of postural and righting reflexes. The treatment after sport injury patient is required that two component actions of muscles as well as permitting action to occur at two or more joint. The effect of P. N. F and of sprot P. N. F are reviewed. Implications for treatment of sport disability are suggested.

  • PDF

Ground Response Analysis of the Cmpressor Station for Installation of Seismic Instrument (정압관리소의 지전계측기 설치를 위한 지반특성 분석)

  • Kwon, Ki-Jun;Kim, Yong-Gil
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.79-86
    • /
    • 2002
  • In the case of earthquake, it is necessary to install earthquake instruments and to measure the ground motions for stable gas supply and restoration in case of supply suspension. Because each point in the site of the gas facilities has different characteristics of ground motion, it is recommended to measure at the point where the ground motion is representative. In this paper, ground motion analysis and noise pattern analysis are carried out to select suitable point for the installation of earthquake instruments and to set of dynamic range of sensors.

DULEX, A Wearable Hand Rehabilitation Device for Stroke Survivals (뇌졸중 환자를 위한 착용형 손 재활훈련기기, DULEX)

  • Kim, Young-Min;Moon, In-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.919-926
    • /
    • 2010
  • This paper proposes a wearable hand rehabilitation device, DULEX, for persons with functional paralysis of upper-limbs after stoke. DULEX has three degrees of freedom for rehabilitation exercises for wrist and fingers except the thumb. The main function of DULEX is to extend the range of motions of finger and wrist being contracture. DULEX is designed by using a parallel mechanism, and its parameters such as length and location of links are determined by kinematic analysis. The motion trajectory of the designed DULEX is aligned to human hand to prevent a slip. To reduce total weight of DULEX, artificial air muscles are used for actuating each joint motion. In feedback control, each joint angle is indirectly estimated from the relations of the input air pressure and the output muscle length. Experimental results show that DULEX is feasible in hand rehabilitation for stroke survivals.

Deformation-based seismic design of concrete bridges

  • Gkatzogias, Konstantinos I.;Kappos, Andreas J.
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1045-1067
    • /
    • 2015
  • A performance-based design (PBD) procedure, initially proposed for the seismic design of buildings, is tailored herein to the structural configurations commonly adopted in bridges. It aims at the efficient design of bridges for multiple performance levels (PLs), achieving control over a broad range of design parameters (i.e., strains, deformations, ductility factors) most of which are directly estimated at the design stage using advanced analysis tools (a special type of inelastic dynamic analysis). To evaluate the efficiency of the proposed design methodology, it is applied to an actual bridge that was previously designed using a different PBD method, namely displacement-based design accounting for higher mode effects, thus enabling comparison of the alternative PBD approaches. Assessment of the proposed method using nonlinear dynamic analysis for a set of spectrum-compatible motions, indicate that it results in satisfactory performance of the bridge. Comparison with the displacement-based method reveals significant cost reduction, albeit at the expense of increased computational effort.