• 제목/요약/키워드: Range cutting

검색결과 341건 처리시간 0.028초

탄력 테이핑이 만성 발목 불안정 환자의 착지 후 방향 전환 시 하지 관절 움직임에 미치는 영향 (The Effect of Elastic Therapeutic Taping on Lower Limb Kinematics during a Cross Cutting Movement from Landing in Subjects with Chronic Ankle Instability)

  • 조태성;김택훈;최흥식;노정석
    • 대한물리의학회지
    • /
    • 제12권4호
    • /
    • pp.1-9
    • /
    • 2017
  • PURPOSE: This study investigated the effect that an elastic therapeutic taping treatment given to patients with chronic ankle instability had on the vertical ground reaction force, center of pressure, and range of motion in the ankle, knee and hip joints, during a Cross-cutting movement from landing. METHODS: This study analyzed 12 able-bodied adults and 12 patients with chronic ankle instability classified by using the Cumberland tool in the motion analysis laboratory, Hanseo University. The experiment was conducted under two conditions elastic taping and no treatment. In order to analyze the difference between the groups. An independent t-test was performed at p>.01. RESULTS: Plying an elastic therapeutic taping to the patients with chronic ankle instability significantly decreased the range of joint motion in the inversion of the ankle joint, the flexion of the knee joint, and the flexion and internal rotation of the hip joint during a cross-cutting movement from landing in comparison with the able-bodied adults p<.01. This restriction in the range of motion decreased the center-of-pressure trajectory length of patients with chronic ankle instability p>.01. CONCLUSION: An elastic therapeutic taping treatment given to patients with chronic ankle instability causes ankle stability to increase during a cross-cutting movement from landing.

공구날 특이길이의 물리적 적합성 고찰 (Physically Compatible Characteristic Length of Cutting Edge Geometry)

  • 안일혁;김익현;황지홍
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.279-288
    • /
    • 2012
  • The material removal mechanism in machining is significantly affected by the cutting edge geometry. Its effect becomes even more substantial when the depth of cut is relatively small as compared to the characteristic length which represents the shape and size of the cutting edge. Conventionally, radius or focal length has been employed as the characteristic length with the assumption that the shape of cutting edge is round or parabolic. However, in reality, there could be various ways to determine the radius or focal length even for the same tool edge profile, depending on the region to be considered as cutting edge in the measured profile and the constraints to be set in constructing the best fitted circle or parabola. In this regard, the present study proposes various models to determine the characteristic length in terms of radius or focal length. Their physical compatibility are validated by carrying out 2D orthogonal cutting experiments using inserts with a wide range of characteristic length ($30{\sim}180\;{\mu}m$ in terms of radius) and then by investigating the correlation between the characteristic length and the cutting forces. Such validation is based on the common belief that the larger the characteristic length is, the blunter the cutting edge is and the higher the cutting forces are. Interestingly, the results showed that the correlation is higher for the radius or focal length obtained with a constraint that the center of best fitted circle or the focus of the best fitted parabola should be on the bisectional line of the wedge angle of tool.

Field test and research on shield cutting pile penetrating cement soil single pile composite foundation

  • Ma, Shi-ju;Li, Ming-yu;Guo, Yuan-cheng;Safaei, Babak
    • Geomechanics and Engineering
    • /
    • 제23권6호
    • /
    • pp.513-521
    • /
    • 2020
  • In this paper, due to the need for cutting cement-soil group pile composite foundation under the 7-story masonry structure of Zhenghe District and the shield tunnel of Zhengzhou Metro Line 5, a field test was conducted to directly cut cement-soil single pile composite foundation with diameter Ф=500 mm. Research results showed that the load transfer mechanism of composite foundation was not changed before and after shield tunnel cut the pile, and pile body and the soil between piles was still responsible for overburden load. The construction disturbance of shield cutting pile is a complicated mechanical process. The load carried by the original pile body was affected by the disturbance effect of pile cutting construction. Also, the fraction of the load carried by the original pile body was transferred to the soil between the piles and therefore, the bearing capacity of composite foundation was not decreased. Only the fractions of the load carried by pile and the soil between piles were distributed. On-site monitoring results showed that the settlement of pressure-bearing plates produced during shield cutting stage accounted for about 7% of total settlement. After the completion of pile cutting, the settlements of bearing plates generated by shield machine during residual pile composite foundation stage and shield machine tail were far away from residual pile composite foundation stage which accounted for about 15% and 74% of total settlement, respectively. In order to reduce the impact of shield cutting pile construction on the settlement of upper composite foundation, it was recommended to take measures such as optimization of shield construction parameters, radial grouting reinforcement and "clay shock" grouting within the disturbance range of shield cutting pile construction. Before pile cutting, the pile-soil stress ratio n of composite foundation was 2.437. After the shield cut pile is completed, the soil around the lining structure is gradually consolidated and reshaped, and residual pile composite foundation reaches a new state of force balance. This was because the condensation of grouting layer could increase the resistance of remaining pile end and friction resistance of the side of the pile.

Cutting Technique for Biodegradable Rope using a CW CO2 Laser with TEM00 mode

  • Lee, Dong-Gil;Kim, Seong-Hun;Park, Seong-Wook;Yang, Yong-Su;Xu, Guo-Cheng
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.576-581
    • /
    • 2012
  • A 23 W continuous wavelength $CO_2$ laser system exited by a high-frequency LCC resonant converter is adapted to cut a biodegradable rope fabricated with polybutylene succinate. As the biodegradable rope consists of three twisted strands, the thickness changes relative to the position of the laser beam and we thus propose a method to determine exact cutting depth. In order to obtain the parameters related to the rope cutting, the experimental and theoretical cutting depths are compared and analyzed for a range of laser heat sources. The melted thickness and groove width of the cut biodegradable rope are also examined. The proposed theoretical cutting depth depends on the incident power and target velocity ratio. From these experimental results, the biodegradable rope with a diameter of 22 mm can be cut with a heat source of 50 J/cm resulting in a melted thickness of 1.96 mm and a groove width of 0.65 mm. The laser system is shown to be perfect tool for the processing of biodegradable rope without the occurrence of raveling.

용접부의 선삭특성에 관한 실험적 연구 (An Experimental Study on the Turning Property of Welded Material)

  • 장복득
    • 한국정밀공학회지
    • /
    • 제3권3호
    • /
    • pp.13-21
    • /
    • 1986
  • Turning property of metal is affected by the cutting condition, tool geome- try and cutting material. But the turning property of welded material is not welknown. Welded structures usually contain nonhomogeneity, defects and resi- dual stresses due to differential contraction between welded metal and base metal. In this paper, authors conducted the experimental test on the turning property, by changing turning condition and welding electrodes of the welded specimens. The results obtained in these experimental tests are as follows; (1) Within the limit of this experimental test, the cutting force of the weld zone is bigger than that of base metal, and this phenomena is caused by the different mechanical property of the weld zone. The range of the variation of cutting force in the weld zone is caused by the nonhomogeneity of the weld zone, respectively. (2) The surface roughness follows the general characteristic of the effect of cutting condition on the surface roughness and the surface roughness of the weld zone shows coarse surface comparing with that of the base metal. (3) The specimen welded by the electrode E4301, shows worse cutting property than that of E4361 and E4313.

  • PDF

실험계획법을 이용한 M2-Cu 기능성 경사 재료의 마이크로 드릴링 특성 평가 (Characterization of Microscale Drilling Process for Functionally Graded M2-Cu Material Using Design of Experiments)

  • 심종우;최대철;신기훈;김홍석
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.502-507
    • /
    • 2015
  • In this study, a microscale drilling process was conducted to evaluate the cutting characteristics of functionally graded materials. A mixture of M2 and Cu powders were formed and sintered to produce disk specimens of various compositions. Subsequently, a microscale hole was created in the specimen by using a desktop-size micro-machining system. By using design of experiments and analysis of variance, it was found that the M2-Cu composition, spindle speed, and the interactions between these two factors had significant effects on the magnitude of cutting forces. However, the influence of feed rate on the cutting force was negligible. A mathematical model was established to predict the cutting force under a wide range of process conditions, and the reliability of the model was confirmed experimentally. In addition, it was observed that increasing the wt% of Cu in an M2-Cu specimen increased the high-frequency amplitude of cutting forces.

복합공구대 디스크임계돌출거리와 절삭력과의 관계에 관한 연구 (A Study on the Relationship between the Cutting Force and the Critical Ejecting Distance of Disk for a Mill Turret)

  • 최지환;김재실;조수용
    • 한국기계가공학회지
    • /
    • 제12권1호
    • /
    • pp.110-116
    • /
    • 2013
  • Curvic coupling of mill turret should maintain disk weight and the cutting resistance which occurs the machining operation and must also have power transmission function. In order to improve machining operation range, the ejecting distance from curvic coupling to the disk must increase as much as possible. But moment is increased by the lack of capacity of the curvic coupling. Increase of moment is the cause of vibration/noise and degradation of machining performance not only stability problem. The manufacturer of mill turret has no the design information between the ejecting distance and the cutting resistance with safety of curvic coupling. Therefore this study describes a finite element analysis model of mill turret using ANSYS workbench. The structural analyses and modal analyses with varying of the ejecting distances and cutting resistances are performed. Finally the equation for relationship between the critical ejecting distance and the cutting resistance is defined under 5 of the safety factor for the maximum von-Mises stress at the curvic coupling.

마늘 주아 수확기 개발을 위한 마늘종의 역학적 특성 분석 (Mechanical Characteristics of Garlic Scapes for Developing Mechanical Garlic Bulbils Harvester)

  • 서정덕;김건회;권순홍
    • Journal of Biosystems Engineering
    • /
    • 제30권2호
    • /
    • pp.75-80
    • /
    • 2005
  • Mechanical characteristics of flower stalks (scapes) of garlic such as shear forces, cutting forces, and modulus of elasticities were investigated as a preliminary research to develop a mechanical harvester of garlic bulbils. The average shear forces of garlic scapes was 0.642 N and the maximum and minimum shear forces were 1.42 and 0.25 N, respectively. The shear forces generally increased as the diameter of garlic scapes increased. There was no correlation between the modulus of elasticity and the diameter of garlic scapes and the average modulus of elasticity of garlic scapes was around $2.40\times10^7\;N/m^2$ There was also no correlation between the cutting force and the diameter of garlic scapes. As the downward speed of blade increased, the cutting force of garlic scapes decreased and reversed to increase. The cutting forces of the lower part garlic scapes were lower than those of the upper part. The range of cutting forces of the lower and the upper part of garlic scapes were 3.88-4.04 N and 4.29-4.93 N, respectively.

다이아몬드 마이크로 블레이드 제조에 있어 부피비의 관점에서 본 윤활제 첨가 효과 (Effect of Lubricant Addition in Terms of Volume Fraction on Fabrication of Cu/Sn Bonded Diamond Micro Blades)

  • 문종철;김송희
    • 한국표면공학회지
    • /
    • 제43권1호
    • /
    • pp.41-45
    • /
    • 2010
  • The effect of $MoS_2$ and graphite content on wear resistance and mechanical properties of Cu/Sn bonded diamond micro blades was comparatively investigated in terms of volume and weight fraction. For the evaluation of endurance and cutting performance, instantaneous electric power consumption and cumulative wear loss during cutting glass work piece at constant velocity were measured with the micro blades of the wide range of lubricant content. The energy consumption of blades for glass cutting decreased with the content of lubricants. Wear amount of blade in volume increased with the amount of lubricant addition. It was found to be relevant to the decrease in flexural strength and hardness with the amount of lubricants. With the same amount of lubricant content in volume fraction $MoS_2$ showed superiority in mechanical properties and cutting performance than graphite while graphite could result in stronger effect on lowering electric consumption during cutting work piece for the same weight percent fraction than $MoS_2$ because of lower density.

BTA드릴에 의한 SM55C의 심공가공시 최적절삭조건과 공구수명에 관한 연구 (A Study on Optimum Cutting Conditions and Tool Life in Deep Hole Drilling for SM55C by BTA Drill)

  • 장성규;전언찬
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.43-49
    • /
    • 1998
  • The deep hole drilling has an increasing demands because of its wide range applications and its good productivity. The BTA drills are capable of machining for having a large length to diameter ratio in single pass to higher degree of accuracy and surface finish. It's really necessary that the investigation for the deep hole drilling by the BTA drill because its required quality should be satisfied with single pass. This thesis deal with the experimental results obtained during single tube BTA system machining on SM55C steel for different machining conditions. The results of the investigation on the optimum cutting condition selecting and tool life reveals as follows. (1) The optimum cutting condition was cutting speed, V = 42 m/min and feed speed. F = 90 mm/min and the tool life was about 10 meters. (2) Surface roughness was $12\mum$ and the roundness was less using $16mum$single edge BTA drill in testing cutting condition.

  • PDF