Journal of the Korean Institute of Telematics and Electronics
/
v.27
no.9
/
pp.1448-1455
/
1990
In this paper, a range image segmentation method is proposed. This method consists of an initial segmentation stage by discontinuous edge detection and surface type labeling based on the sign of the principal curvatures. Initially type labeled image is oversegmented, this image is merged via stepwise optimal region merging stage based on polynomial function approxiamtion. The successful segmentation results are presented for two synthetic range images with noise and a real-world ERIM range image.
Journal of the Korean Institute of Telematics and Electronics B
/
v.31B
no.10
/
pp.123-129
/
1994
The segmentation of range image is essential to recognize the three dimensional object. Generally, surface curvature is well-known feature for segmentation and classification of the fange image, but it is sensitive to noies. In this paper, we propose the structure of hierarchical neural network using surface curvature for segmentation of range images. The hierarchical structure of neural networks is robust to noise and the result of segmentaion is better than conventional optimization method of single level.
Liver cancer is the most fatal cancer that occurs worldwide. In order to diagnose liver cancer, the patient's physical condition was checked by using a CT technique using radiation. Segmentation was needed to diagnose the liver on the patient's abdominal CT scan, which the radiologists had to do manually, which caused tremendous time and human mistakes. In order to automate, researchers attempted segmentation using image segmentation algorithms in computer vision field, but it was still time-consuming because of the interactive based and the setting value. To reduce time and to get more accurate segmentation, researchers have begun to attempt to segment the liver in CT images using CNNs, which show significant performance in various computer vision fields. The pixel value, or numerical value, of the CT image is called the Hounsfield Unit (HU) value, which is a relative representation of the transmittance of radiation, and usually ranges from about -2000 to 2000. In general, deep learning researchers reduce or limit this range and use it for training to remove noise and focus on the target organ. Here, we observed that the range of HU values was limited in many studies but different in various liver segmentation studies, and assumed that performance could vary depending on the HU range. In this paper, we propose the possibility of considering HU value range as a hyper parameter. U-Net and ResUNet were used to compare and experiment with different HU range limit preprocessing of CHAOS dataset under limited conditions. As a result, it was confirmed that the results are different depending on the HU range. This proves that the range limiting the HU value itself can be a hyper parameter, which means that there are HU ranges that can provide optimal performance for various models.
Journal of the Korean Institute of Telematics and Electronics B
/
v.33B
no.4
/
pp.111-123
/
1996
In this paper, a new edge-based segmentation algorithm for range image using pseudo reflectance images (PRIs) is proposed. A model of pseudo reflectance which is useful in analyzing three dimensional scene and objects is introduced and then three PRIs are generated by the model. For generating three PRIs, bels and jain's differential window operator is selected and three different light source directions are determined. Three edge images are extracted from each PRI and a fused (logical ORing) edge image is constructed for the benefit of enhanced edge formation. The final segmentation results of the proposed algoritm are obtained after the processing of thinning, labeling and correcting erroeneous regions with the fused edge image. The good performance of edge detection and segmentation is confirmed via computer simulation with synthetic and real range images.
Journal of the Korean Institute of Telematics and Electronics B
/
v.32B
no.8
/
pp.1074-1084
/
1995
In this paper, we investigate edge extraction and segmentation of range images. We first discuss problems that arise in the conventional region-based segmentation methods and edge-based ones using principal curvatures, then we propose an edge-based algorithm. In the proposed algorithm, we extract edge contours by using the Gaussian filter and directional derivatives, and segment a range image based on extracted edge contours, Also we present the problem that arises in the conventional thresholding, then we propose a new threshold selection method. To solve the problem that local maxima of the first- and second- order derivatives gather near step edges, we first find closed roof edge contours, fill the step edge region, and finally thin edge boundaries. Computer simulations with several range images show that the proposed method yields better performance than the conventional one.
Journal of the Korean Institute of Telematics and Electronics
/
v.27
no.1
/
pp.120-129
/
1990
In this paper, 3-dimensional object segmentation and classification are proposed. Planar object is segmented surface using jump boundary and internal boundary. Curved object is segmented surfaces by maximin clustering method. Segmented surfaces are classified by depth trends and angle measurement of normal vectors. Classified surfaces are merged according to adjacent surfaces and compared to Guassian curvature and mean curvature method. The proposed methods have been successfully applied to the synthetic range images and shows good classification.
Journal of the Korean Institute of Telematics and Electronics
/
v.27
no.8
/
pp.1275-1283
/
1990
Perception of surfaces from range images plays a key role in 3-D object recognition. Recognition of 3-D objects from range images is performed by matching the perceived surface descriptions with stored object models. The first step of the 3-d object recognition from range images is image segmentation. In this paper, an approach for segmenting 3-D range images into symbolic surface descriptions using spatial Gabor filter is proposed. Since the phase of data has a lot of important information, the phase information with magnitude information can effectively segment the range imagery into regions satisfying a common homogeneity criterion. The phase and magnitude of Gabor filter can represent a unique featur vector at a point of range data. As a result, range images are trnasformed into feature vectors in 3-parameter representation. The methods not only to extract meaningful features but also to classify a patch information from range images is presented.
Journal of International Society for Simulation Surgery
/
v.4
no.1
/
pp.21-23
/
2017
Purpose In this paper, we proposed alternate neighborhood system and reverse spread-direction approach for accurate and fast cellular automata-based image segmentation method. Materials and Methods On the basis of a simple but effective interactive image segmentation technique based on a cellular automaton, we propose an efficient algorithm by using Moore and designed neighborhood system alternately and reversing the direction of the reference pixels for spreading out to the surrounding pixels. Results In our experiments, the GrabCut database were used for evaluation. According to our experimental results, the proposed method allows cellular automata-based image segmentation method to faster while maintaining the segmentation quality. Conclusion Our results proved that proposed method improved accuracy and reduced computation time, and also could be applied to a large range of applications.
Journal of the Korean Institute of Telematics and Electronics B
/
v.29B
no.7
/
pp.70-78
/
1992
In this paper, an approach for 3-D object segmentation and classification, which is based on eigen-values of polynomial function as their surface features, using neural network is proposed. The range images of 3-D objects are classified into surface primitives which are homogeneous in their intrinsic eigenvalue properties. The misclassified regions due to noise effect are merged into correct regions satisfying homogeneous constraints of Hopfield neural network. The proposed method has advantage of processing both segmentation and classification simultaneously.
Character segmentation is a preprocessing step in many offline handwriting recognition systems. In this paper, Chinese characters are categorized into seven different structures. In each structure, the character size with the range of variations is estimated considering typical handwritten samples. The component removal and merge criteria are presented to remove punctuation symbols or to merge small components which are part of a character. Finally, the criteria for segmenting the adjacent characters concerning each other or overlapped are proposed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.