• 제목/요약/키워드: Range Accuracy

검색결과 2,670건 처리시간 0.032초

YouTube as a source of patient education information for elbow ulnar collateral ligament injuries: a quality control content analysis

  • Yu, Jonathan S;Manzi, Joseph E;Apostolakos, John M;Carr II, James B;Dines, Joshua S
    • Clinics in Shoulder and Elbow
    • /
    • 제25권2호
    • /
    • pp.145-153
    • /
    • 2022
  • Background: While online orthopedic resources are becoming an increasingly popular avenue for patient education, videos on YouTube are not subject to peer review. The purpose of this cross-sectional study was to evaluate the quality of YouTube videos for patient education in ulnar collateral ligament (UCL) injuries of the elbow. Methods: A search of keywords for UCL injury was conducted through the YouTube search engine. Each video was categorized by source and content. Video quality, reliability, and accuracy were assessed by two independent raters using five metrics: (1) Journal of American Medical Association (JAMA) benchmark criteria (range 0-4) for video reliability; (2) modified DISCERN score (range 1-5) for video reliability; (3) Global Quality Score (GQS; range 1-5) for video quality; (4) ulnar collateral ligament-specific score (UCL-SS; range 0-16), a novel score for comprehensiveness of health information presented; and (5) accuracy score (AS; range 1-3) for accuracy. Results: Video content was comprised predominantly of disease-specific information (52%) and surgical technique (33%). The most common video sources were physician (42%) and commercial (23%). The mean JAMA score, modified DISCERN score, GQS, UCL-SS, and AS were 1.8, 2.4, 1.9, 5.3, and 2.7 respectively. Conclusions: Overall, YouTube is not a reliable or high-quality source for patients seeking information regarding UCL injuries, especially with videos uploaded by non-physician sources. The multiplicity of low quality, low reliability, and irrelevant videos can create a cumbersome and even inaccurate learning experience for patients.

거리에 비례하는 오차를 고려한 eLoran 항법 알고리즘 (eLoran Navigation Algorithm Considering Errors Proportional to the Range)

  • 송세필;최헌호;김영백;이상정;박찬식
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2326-2332
    • /
    • 2011
  • eLoran is enhanced Loran-C and eLoran is researched for as GPS backup system because this system is resistant to signal interference and has high accuracy. TOA measurements of eLoran include errors proportional to the range such as PF, SF, ASF and EF. Therefore these error factors must be compensated for improved accuracy of position. Generally, error models or GPS aided compensation methods are used, but these methods are limited by lack of infrastructure or system performance. Therefore, this paper proposes new model of error factors included in eLoran TOA measurements and navigation algorithm using this model. Error factors in this model are sum of a certain size of error and error proportional to the range. And feasibility and performance of proposed navigation algorithm are verified by using raw measurements.

Improvement of a Pound-Drever-Hall Technique to Measure Precisely the Free Spectral Range of a Fabry-Perot Etalon

  • Seo, Dong-Sun;Park, Chongdae;Leaird, Daniel E.;Weiner, Andrew M.
    • Journal of the Optical Society of Korea
    • /
    • 제19권4호
    • /
    • pp.357-362
    • /
    • 2015
  • We examine the principle of a modified Pound-Drever-Hall (PDH) technique to measure the free spectral range of a Fabry-Perot etalon (FPE). The FPE's periodic transmission of phase-modulated light allows us to adopt a sampling theorem to develop a new relationship for the PDH error signal. This leads us to find the key parameters governing the measurement accuracy: the phase modulation index ${\beta}$ and the FPE finesse. Without any additional complexity for background noise reduction, we achieve a measurement accuracy of 0.5 ppm. The improvement is mainly attributed to the wide-band phase modulation approaching ${\beta}=10$, and partly to the use of both reflected and transmitted light from the FPE and good FPE finesse.

막대형 시편의 종진동에 대한 동적모형 및 그 적용범위의 고찰 (Investigation of Dynamic Models for Longitudinal Vibration of a Rod-Type Specimen and Their Useful Range)

  • 안태길;강기호;김광준
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.161-169
    • /
    • 1995
  • One of the most influential factors on estimating the complex modulus by using longitudinal vibration of a rod-type specimen is the accuracy of the approximate models for describing the dynamic behavior of the specimen. Performance of several approximate models is investigated analytically on the basis of the Pochhammer-Chree theory in case of infinite specimen and numerically on the basis of the finite element analysis in case of finite specimen. The frequency range where each model gives good approximation and its accuracy in that range are determined.

초정밀 스테이지용 스토퍼기구의 개발 (Development of Stopper Mechanism for the Precision Stage with Nanometer Accuracy)

  • 권현규;박창용
    • 한국기계가공학회지
    • /
    • 제11권2호
    • /
    • pp.112-117
    • /
    • 2012
  • This paper presents a new stopper mechanism for precision stage by using the Piezoelectric element actuator. The new stage including a new stopper mechanism has the precision positioning mechanism that was been developed for generation displacements with nanometer accuracy and a millimeter dynamic range simulataneouly. The stage is composed not of the mechanical two stopper but of only one Piezoelectric element actuator. The characteristics for the new stage and the stopper have been evaluated experimentally. As the results, we can know that the linearity error characteristics of stage is 30nm in the $20{\mu}m$ measurement range. In addition, the experimental results are confirmed the possibility of the movement in millimeter range.

계산량과 정확도를 동시에 만족하는 eLoran/GPS 통합 항법 알고리즘 (The Integrated eLoran/GPS Navigation Algorithm for Reduced Calculational Complexity and High Accuracy)

  • 송세필;신미영;손석보;김영백;이상정;박찬식
    • 전기학회논문지
    • /
    • 제60권3호
    • /
    • pp.612-619
    • /
    • 2011
  • Satellite navigation system such as GPS is becoming more important infrastructure for positioning, navigation and timing. But satellite navigation system is vulnerable to interferences because of the low received power, complementary navigation system such as eLoran is needed. In order to develop eLoran/GPS navigation system, integrated eLoran/GPS navigation algorithm is necessary. In this paper, new integrated eLoran/GPS navigation algorithm is proposed. It combines the position domain integration and the range domain integration to get accurate position with less computational burden. Also an eLoran/GPS evaluation platform is designed and performance evaluation of the proposed algorithm using the evaluation platform is given. The proposed algorithm gives an accuracy of the range domain integration with a computational load of the position domain integration.

무선 센서 네트워크를 위한 DV-Hop 기반 계수 할당을 통한 위치 인식 알고리즘 (Coefficient Allocated DV-Hop algorithm for Wireless Sensor Networks localization)

  • ;이채우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 추계학술발표대회
    • /
    • pp.837-840
    • /
    • 2010
  • Wireless Sensor Networks have been proposed for several location-dependent applications. For such systems, the cost and limitations of the hardware on sensing nodes prevent the use of range-based localization schemes that depend on absolute point to point distance estimates. Because coarse accuracy is sufficient for most sensor network applications, solutions in range-free localization are being pursued as a cost-effective alternative to more expensive range-based approaches. In this paper, we proposed a Coefficient Allocated DV-Hop (CA DV-Hop) algorithm which reduces node's location error by awarding a credit value with respect to number of hops of each anchor to an unknown node. Simulation results have verified the high estimation accuracy with our approach which outperforms the classical DV-Hop.

DGNSS 위치정확도 향상을 위한 PRC 보정정보 모델링에 관한 연구 (A Study on Pseudo-Range Correction Modeling in order to Improve DGNSS Accuracy)

  • 손동효;박관동
    • 대한공간정보학회지
    • /
    • 제23권4호
    • /
    • pp.43-48
    • /
    • 2015
  • 본 논문은 DGNSS(Differential GNSS) 위치정확도 향상을 위한 PRC(Pseudo-Range Correction) 보정정보 모델링에 관한 연구내용이다. PRC는 DGNSS 기법을 이용하여 측위정확도를 향상시키기 위해 사용되는 보정정보로써 사용자가 통신망을 통해 수신한 뒤 사용된다. 그러나 일시적인 통신두절이나 신호간섭 등으로 인해 위치정확도가 급격히 저하되는 일이 발생한다. 그래서 본 논문에서는 이러한 현상을 방지하기 위해 PRC 보정정보를 다항식 곡선접합 방정식을 이용하여 모델링하고 그 정확도를 평가하였다. 모델링 매개변수를 이용하여 계산한 PRC 추정값과 실제 기준국 수신기에서 생산되는 관측값간의 차이를 계산한 결과 GPS의 경우에는 평균 0.1m, RMSE는 1.3m로 나타났고 대부분의 위성들이 ${\pm}1.0m$ 이내의 편향오차와 3.0m 이내의 RMSE를 보였다. GLONASS의 경우에는 평균 0.2m이고 대부분 ${\pm}2.0m$ 이내에 분포하였다. RMSE는 2.6m로 나타났고 다수의 위성들이 3.0m 이내에 분포하였다. 이런 결과는 모델링을 통해 산출한 추정값이 사용자의 위치정확도를 유지하는데 유효하게 사용될 수 있음을 보였다. 그러나 고도각이 낮은 영역에서 두 값의 차이가 크게 나타나 이에 대한 연구를 추가적으로 수행할 필요성이 있다.

측정오차를 고려한 거리영상의 변환계수 추출 (Extraction of registration parameters from range images considering measurement error)

  • 윤강식;이병욱;박래홍
    • 전자공학회논문지S
    • /
    • 제34S권5호
    • /
    • pp.66-72
    • /
    • 1997
  • In this paper, we propose a method improving the accuracy of th eregistration coefficients calculated form two range images considering the measurement error. The employed range finder is based on triangulation and the depth measurement error is described with an error covariance matrix, which is based on thesensitivity of the range measurements. Experimental results demonstrate that the registration coefficients obtained with the proposed method are better than the results when the measurment errors are neglected.

  • PDF

Multi-Objective Optimization for a Reliable Localization Scheme in Wireless Sensor Networks

  • Shahzad, Farrukh;Sheltami, Tarek R.;Shakshuki, Elhadi M.
    • Journal of Communications and Networks
    • /
    • 제18권5호
    • /
    • pp.796-805
    • /
    • 2016
  • In many wireless sensor network (WSN) applications, the information transmitted by an individual entity or node is of limited use without the knowledge of its location. Research in node localization is mostly geared towards multi-hop range-free localization algorithms to achieve accuracy by minimizing localization errors between the node's actual and estimated position. The existing localization algorithms are focused on improving localization accuracy without considering efficiency in terms of energy costs and algorithm convergence time. In this work, we show that our proposed localization scheme, called DV-maxHop, can achieve good accuracy and efficiency. We formulate the multi-objective optimization functions to minimize localization errors as well as the number of transmission during localization phase. We evaluate the performance of our scheme using extensive simulation on several anisotropic and isotropic topologies. Our scheme can achieve dual objective of accuracy and efficiency for various scenarios. Furthermore, the recently proposed algorithms require random uniform distribution of anchors. We also utilized our proposed scheme to compare and study some practical anchor distribution schemes.