• 제목/요약/키워드: Random search

검색결과 511건 처리시간 0.031초

Reliability sensitivities with fuzzy random uncertainties using genetic algorithm

  • Jafaria, Parinaz;Jahani, Ehsan
    • Structural Engineering and Mechanics
    • /
    • 제60권3호
    • /
    • pp.413-431
    • /
    • 2016
  • A sensitivity analysis estimates the effect of the change in the uncertain variable parameter on the probability of the structural failure. A novel fuzzy random reliability sensitivity measure of the failure probability is proposed to consider the effect of the epistemic and aleatory uncertainties. The uncertainties of the engineering variables are modeled as fuzzy random variables. Fuzzy quantities are treated using the ${\lambda}$-cut approach. In fact, the fuzzy variables are transformed into the interval variables using the ${\lambda}$-cut approach. Genetic approach considers different possible combinations within the search domain (${\lambda}$-cut) and calculates the parameter sensitivities for each of the combinations.

Optimization of Stochastic System Using Genetic Algorithm and Simulation

  • 유지용
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1999년도 추계학술대회 논문집
    • /
    • pp.75-80
    • /
    • 1999
  • This paper presents a new method to find a optimal solution for stochastic system. This method uses Genetic Algorithm(GA) and simulation. GA is used to search for new alternative and simulation is used to evaluate alternative. The stochastic system has one or more random variables as inputs. Random inputs lead to random outputs. Since the outputs are random, they can be considered only as estimates of the true characteristics of they system. These estimates could greatly differ from the corresponding real characteristics for the system. We need multiple replications to get reliable information on the system. And we have to analyze output data to get a optimal solution. It requires too much computation to be practical. We address the problem of reducing computation. The procedure on this paper use GA character, an iterative process, to reduce the number of replications. The same chromosomes could exit in post and present generation. Computation can be reduced by using the information of the same chromosomes which exist in post and present current generation.

  • PDF

RPE 검색을 이용한 CELP 보코더의 불규칙 코드북 검색 (On a Reduction of Codebook Searching Time by using RPE Searching Tchnique in the CELP Vocoder)

  • 김대식
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1995년도 제12회 음성통신 및 신호처리 워크샵 논문집 (SCAS 12권 1호)
    • /
    • pp.141-145
    • /
    • 1995
  • Code excited linear prediction speech coders exhibit good performance at data rates as low as 4800 bps. The major drawback to CELP type coders is their large computational requirements. In this paper, we propose a new codebook search method that preserves the quality of the CELP vocoder with reduced complexity. The basic idea is to restrict the searching range of the random codebook by using a searching technique of the regular pulse excitation. Applying the proposed method to the CELP vocoder, we can get approximately 48% complexity reduction in the codebook search.

  • PDF

최소카이제곱추정과 붓스트랩 (Minimum Chi-square estimation and the bootstrap)

  • 정한영;이기원;구자용
    • 응용통계연구
    • /
    • 제7권2호
    • /
    • pp.269-277
    • /
    • 1994
  • 최소카이제곱추정에 의하여 구한 추정량의 표본분포를 붓스트랩으로 근사시켰을 때에도 정규근사와 최소한 동등함을 설명하고, 이 이론을 자궁경부암 조직에서 검출되는 란게르한스 세포의 출현률 추정에 이용하였다. 란게르한스 세포의 출현횟수를 포지티브 포아송 모형에 적합시켰으며, 추정된 출현률의 표준오차는 대표본 근사 및 붓스트랩을 이용하여 계산하였다. 두 방법 모두 비슷한 결과를 제공하였다.

  • PDF

랜덤 탐색과 유전 알고리즘 탐색을 이용한 효율적 기계학습 방법 연구 (A Study on Efficient Machine Learning Method Using Random Search and Genetic Algorithm Search)

  • 이경태;권영근
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.494-496
    • /
    • 2020
  • 기계학습 모델을 이용한 분류 및 회귀 문제해결에는 다양한 전처리 알고리즘 및 기계학습 모델이 활용된다. 하지만 합리적인 성능을 위해서는 주어진 데이터에 따라 적절한 알고리즘 조합에 대한 탐색 및 최적화 과정이 펄수적이다. 본 논문에서는 최적의 알고리즘 조합을 탐색하는 방법 중 랜덤 탐색과 유전 알고리즘 탐색 방법을 구현하고 8가지 데이터에 대한 성능 비교를 통해 여러 기계학습 모델을 고려하는 탐색 방법의 필요성을 보인다.

Finding Top-k Answers in Node Proximity Search Using Distribution State Transition Graph

  • Park, Jaehui;Lee, Sang-Goo
    • ETRI Journal
    • /
    • 제38권4호
    • /
    • pp.714-723
    • /
    • 2016
  • Considerable attention has been given to processing graph data in recent years. An efficient method for computing the node proximity is one of the most challenging problems for many applications such as recommendation systems and social networks. Regarding large-scale, mutable datasets and user queries, top-k query processing has gained significant interest. This paper presents a novel method to find top-k answers in a node proximity search based on the well-known measure, Personalized PageRank (PPR). First, we introduce a distribution state transition graph (DSTG) to depict iterative steps for solving the PPR equation. Second, we propose a weight distribution model of a DSTG to capture the states of intermediate PPR scores and their distribution. Using a DSTG, we can selectively follow and compare multiple random paths with different lengths to find the most promising nodes. Moreover, we prove that the results of our method are equivalent to the PPR results. Comparative performance studies using two real datasets clearly show that our method is practical and accurate.

유전자 알고리듬을 이용한 동역학적 구조물의 최적설계 (Optimal Design of Dynamic System Using a Genetic Algorithm(GA))

  • 황상문;성활경
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.116-124
    • /
    • 1999
  • In most conventional design optimization of dynamic system, design sensitivities are utilized. However, design sensitivities based optimization method has numbers of drawback. First, computing design sensitivities for dynamic system is mathematically difficult, and almost impossible for many complex problems as well. Second, local optimum is obtained. On the other hand, Genetic Algorithm is the search technique based on the performance of system, not on the design sensitivities. It is the search algorithm based on the mechanics of natural selection and natural genetics. GA search, differing from conventional search techniques, starts with an initial set of random solutions called a population. Each individual in the population is called a chromosome, representing a solution to the problem at hand. The chromosomes evolve through successive iterations, called generations. As the generation is repeated, the fitness values of chromosomes were maximized, and design parameters converge to the optimal. In this study, Genetic Algorithm is applied to the actual dynamic optimization problems, to determine the optimal design parameters of the dynamic system.

  • PDF

하모니 서치 알고리즘과 고유진동수 제약조건에 의한 트러스의 단면과 형상 최적설계 (Optimum Design of Truss on Sizing and Shape with Natural Frequency Constraints and Harmony Search Algorithm)

  • 김봉익;권중현
    • 한국해양공학회지
    • /
    • 제27권5호
    • /
    • pp.36-42
    • /
    • 2013
  • We present the optimum design for the cross-sectional(sizing) and shape optimization of truss structures with natural frequency constraints. The optimum design method used in this paper employs continuous design variables and the Harmony Search Algorithm(HSA). HSA is a meta-heuristic search method for global optimization problems. In this paper, HSA uses the method of random number selection in an update process, along with penalty parameters, to construct the initial harmony memory in order to improve the fitness in the initial and update processes. In examples, 10-bar and 72-bar trusses are optimized for sizing, and 37-bar bridge type truss and 52-bar(like dome) for sizing and shape. Four typical truss optimization examples are employed to demonstrate the availability of HSA for finding the minimum weight optimum truss with multiple natural frequency constraints.

머신러닝 기법을 이용한 약물 분류 방법 연구 (A Study on the Drug Classification Using Machine Learning Techniques)

  • Anmol Kumar Singh;Ayush Kumar;Adya Singh;Akashika Anshum;Pradeep Kumar Mallick
    • 산업과 과학
    • /
    • 제3권2호
    • /
    • pp.8-16
    • /
    • 2024
  • 본 논문에서는 인구통계학적, 생리학적 특성을 기반으로 환자에게 가장 적합한 약물을 예측하는 것을 목표로 하는 약물 분류 시스템을 제시한다. 데이터 세트에는 적절한 약물을 결정하기 위한 목적으로 연령, 성별, 혈압(BP), 콜레스테롤 수치, 나트륨 대 칼륨 비율(Na_to_K)과 같은 속성들이 포함된다. 본 연구에 사용된 모델은 KNN(K-Nearest Neighbors), 로지스틱 회귀 분석 및 Random Forest이다. 하이퍼파라미터를 최적화하기 위해 5겹 교차 검증을 갖춘 GridSearchCV를 활용하였으며, 각 모델은 데이터 세트에서 훈련 및 테스트 되었다. 초매개변수 조정 유무에 관계없이 각 모델의 성능은 정확도, 혼동 행렬, 분류 보고서와 같은 지표를 사용하여 평가되었다. GridSearchCV를 적용하지 않은 모델의 정확도는 0.7, 0.875, 0.975인 반면, GridSearchCV를 적용한 모델의 정확도는 0.75, 1.0, 0.975로 나타났다. GridSearchCV는 로지스틱 회귀 분석을 세 가지 모델 중 약물 분류에 가장 효과적인 모델로 식별했으며, K-Nearest Neighbors가 그 뒤를 이었고 Na_to_K 비율은 결과를 예측하는 데 중요한 특징인 것으로 밝혀졌다.

Harmony Search 알고리즘을 이용한 입체트러스의 단면최적화 (Size Optimization of Space Trusses Based on the Harmony Search Heuristic Algorithm)

  • 이강석;김정희;최창식;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.359-366
    • /
    • 2005
  • Most engineering optimization are based on numerical linear and nonlinear programming methods that require substantial gradient information and usually seek to improve the solution in the neighborhood of a starting point. These algorithm, however, reveal a limited approach to complicated real-world optimization problems. If there is more than one local optimum in the problem, the result may depend on the selection of an initial point, and the obtained optimal solution may not necessarily be the global optimum. This paper describes a new harmony search(HS) meta-heuristic algorithm-based approach for structural size optimization problems with continuous design variables. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. Two classical space truss optimization problems are presented to demonstrate the effectiveness and robustness of the HS algorithm. The results indicate that the proposed approach is a powerful search and optimization technique that may yield better solutions to structural engineering problems than those obtained using current algorithms.

  • PDF