• Title/Summary/Keyword: Random mutation

Search Result 81, Processing Time 0.024 seconds

The Evaluation of UV-induced Mutation of the Microalgae, Chlorella vulgaris in Mass Production Systems (자외선에 의해 유도된 Chlorella vulgaris 돌연변이 균주의 대량 생산 시스템에서의 평가)

  • Choi, Tae-O;Kim, Kyong-Ho;Kim, Gun-Do;Choi, Tae-Jin;Jeon, Young Jae
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1137-1144
    • /
    • 2017
  • The microalgae Chlorella vulgaris has been considered an important alternative resource for biodiesel production. However, its industrial-scale production has been constrained by the low productivity of the biomass and lipid. To overcome this problem, we isolated and characterized a potentially economical oleaginous strain of C. vulgaris via the random mutagenesis technique using UV irradiation. Two types of mass production systems were compared for their yield of biomass and lipid content. Among the several putatively oleaginous strains that were isolated, the particular mutant strain designated as UBM1-10 in the laboratory showed an approximately 1.5-fold higher cell yield and lipid content than those from the wild type. Based on these results, UBM1-10 was selected and cultivated under outdoor conditions using two different types of reactors, a tubular-type photobioreactor (TBPR) and an open pond-type reactor (OPR). The results indicated that the mutant strain cultivated in the TBPR showed more than 5 times higher cell concentrations ($2.6g\;l^{-1}$) as compared to that from the strain cultured in the OPR ($0.5g\;l^{-1}$). After the mass cultivation, the cells of UBM1-10 and the parental strain were further investigated for crude lipid content and composition. The results indicate a 3-fold higher crude lipid content from UBM1-10 (0.3%, w/w) as compared to that from the parent strain (0.1% w/w). Therefore, this study demonstrated that the economic potential of C. vulgaris as a biodiesel production resource can be increased with the use of a photoreactor type as well as the strategic mutant isolation technique.