본 연구에서는 카오스 2중 Tent 사상에 의한 랜덤 주파수 캐리어 발생기를 제안하고 있다. 제안된 방법은 2중 텐트사상의 분기트리(Bifurcation Tree)에서 카오스 발생 영역인 $\lambda$=0.99을 이용하여 랜덤 수글 발생시키고 있다. 제안된 방법과 종전의 LCG(Linear Congruential Generator)에 의한 방법의 고조파 스펙트럼을 실험에 의하여 비교 검토하였다.
A dynamic range compression algorithm using Markov random field (MRF) modeling to display high dynamic range (HDR) images on low dynamic range (LDR) devices is proposed in this work. The proposed algorithm separates foreground objects from the background using the edge information, and then compresses the color differences across the edges based on the MRF modeling. By minimizing a cost function using belief propagation, the proposed algorithm can provide an effective LDR image. Simulation results show that the proposed algorithm provides good results.
Communications for Statistical Applications and Methods
/
제6권3호
/
pp.781-790
/
1999
In this paper we consider estimation of cancer incidence rates for local areas. The raw estimates usually are based on small sample sizes and hence are usually unreliable. A hierarchical Bayes generalized linear model is used which connects the local areas thereby enabling one to 'borrow strength' Random effects with pairwise difference priors model the spatial structure in the data. The methods are applied to cancer incidence estimation for census tracts in a certain region of the state of New York.
A linkage map of Capsicum annuum L. was constructed by random amplified polymorphic DNA (RAPD) markers followed in a backcross population of an intraspecific cross between cultivars HDA210 and Yatsufusa. A total of 420 random primers were tested and 311 polymorphic bands were generated by 158 random primers. Among them, 86 Yatsufusa specific bands generated by 52 primers were examined for mapping. Most bands except three segregated in Mendelian fashion fitting the expected 1:1 ratio. The total length of the map was 533 cM distributed in 15 linkage groups. The map distance between adjacent markers ranged 0 to 32.8 cM, with an average distance of 9.1 cM (63 markers). Some markers were clustered and this may be due to the amplification of a repetitive sequence by the RAPDs. Primer pairs for a sequence characterized amplified region (SCAR) were developed and the segregation scores by the SCAR primers were in accordance with the RAPD data. Two QTL markers for number of axillary shoots and for early flowering were developed. One QTL for early flowering located in the linkage group 3 and explained 61 "io of the phenotypic variation. The other QTL for the number of axillary shoots located in the linkage group 4 explained 55 % of the phenotypic variation.tion.
The domination of the Internet by TCP-based services has spawned many efforts to provide high network utilization with low loss and delay in a simple and scalable manner. Active queue management (AQM) algorithms attempt to achieve these goals by regulating queues at bottleneck links to provide useful feedback to TCP sources. While many AQM algorithms have been proposed, most suffer from instability, require careful configuration of nonintuitive control parameters, or are not practical because of slow response to dynamic traffic changes. In this paper, we propose a new AQM algorithm, hybrid random early detection (HRED), that combines the more effective elements of recent algorithms with a random early detection (RED) core. HRED maps instantaneous queue length to a drop probability, automatically adjusting the slope and intercept of the mapping function to account for changes in traffic load and to keep queue length within the desired operating range. We demonstrate that straightforward selection of HRED parameters results in stable operation under steady load and rapid adaptation to changes in load. Simulation and implementation tests confirm this stability, and indicate that overall performances of HRED are substantially better than those of earlier AQM algorithms. Finally, HRED control parameters provide several intuitive approaches to trading between required memory, queue stability, and response time.
본 논문에서는 위상 변조된 영상과 간섭이 원리를 이용한 영상 복호화 수준을 향상시키는 방법을 제안하였다. 원 영상과 무작위 영상은 이진 데이터 값을 가지고 위상 변조된 원 영상은 무작위 위상 변조된 키와 곱함으로씨 이진 위상 영상으로 암호화하였다. 이때 각각의 위상 변조된 영상물의 위상값은 0과 π이다. 제안한 복호화 과정은 암호화에 사용된 동일한 무작위 위상 변조된 기와 암호화된 영상을 정합시킨 영상과 가족과의 간섭에 의해서 간단히 복원될 수 있다. 컴퓨터 시뮬레이션과 광 실험을 통하여 제안한 방법이 광 암호화 시스템에 적합함을 확인하였다.
생물다양성은 환경영향평가 제도의 목표에 중요한 부문으로, 개발대상지 입지 선정, 주변 환경 파악 및 교란으로 인한 생물종 영향 등에서 활용되고 있다. 환경영향평가 분야에서 새로운 기술과 모델을 활용하여 생물다양성을 보다 정확하게 평가하고 예측하는 방안에 대한 연구가 많이 진행되고 있다. 비록 현장, 문헌조사를 통한 데이터를 바탕으로 종 풍부도 지수를 평가하고 있으나, 현장 데이터는 시·공간적으로 미흡하므로 고해상도의 종 풍부도 매핑을 통한 기초자료를 활용함으로서, 모니터링 실효성 문제 해결이 필요하다. 따라서 본 연구에서는 제4차 전국자연환경조사 데이터와 환경변수를 바탕으로 Random forest 모델을 활용하여 종 분포모형을 개발하였다. 해당 모델은 24종의 포유류 종 분포 매핑 결과를 species richness index를 활용하여 100m 해상도의 종 풍부도 매핑 결과를 도출하였다. 연구 결과, 종 분포모형은 평균 0.82의 AUC값으로 우수한 예측 정확도를 보였다. 또한, 전국자연환경조사 데이터와 비교결과, 고 해상도의 종 풍부도 매핑 결과의 종 풍부도 분포는 정규분포의 형태를 가지고 있어 환경영향평가에서의 기초자료로 사용함에 있어 신뢰성이 높다. 본 연구의 분석결과는 추후 도시개발과 사업을 함에 있어 생물다양성 평가, 서식지 보전 등에 새로운 참고자료로 활용될 수 있을 것으로 사료된다.
산사태는 전 세계적으로 매년 큰 재산 피해를 야기하는 자연 재해로 알려져 있다. 국내에서도 기후 변화의 영향으로 산사태 피해가 증가하는 경향을 보이고 있으며, 이로 인한 피해를 줄이기 위해서는 산사태를 증가시키는 인자들을 파악하는 것이 중요하다. 따라서 본 연구는 충청북도 충주시에서 발생한 산사태 피해에 영향을 미치는 변수들의 중요도를 평가하기 위해 랜덤포레스트 모델을 활용하여 14개의 인자들 사이의 중요도를 분석하였다. 연구 결과, 모델의 성능은 AUC가 0.87로 높은 정확도를 보이며, 변수 중요도는 경사 방향, 경사, 계곡까지의 직선 거리, 고도 순으로 정해졌으며, 이는 경사방향과 경사 등의 지형인자가 암종과 유효토심과 같은 지질과 토양인자보다 산사태 피해에 더 큰 영향을 미친다는 것을 시사한다. 이 연구 결과는 산사태 피해 예측지도의 제작 및 산사태 피해 감소에 초점을 맞춘 연구에 기초 자료로서 활용될 수 있을 것으로 기대된다.
본 논문에서는 파티클 필터 방법을 이용한 이동로봇의 SLAM(Simultaneous Localization and Mapping) 방법을 제안한다. 이동로봇의 SLAM은 지도가 주어지지 않는 환경에서 로봇 스스로 자신의 위치를 파악하는 것과 동시에 지도를 만드는 것이다. 제안된 방법은 로봇의 위치를 추정함과 동시에 특징점인 외부 비이컨들의 위치를 추정하는 방법을 다루고 있다. 특히 파티클 필터 방법을 적용하여 이동로봇과 특징점 위치를 파티클의 분포에 의해 확률적으로 표현한다. 제안된 SLAM방법은 이동로봇의 동작 뿐 아니라 특징점 위치의 불확실성을 고려한다. 따라서 매 샘플링 시각에 특징점의 위치 정보도 불확실성을 고려하여 예측되어진다. 제안된 방법의 성능을 시뮬레이션과 실험을 통하여 평가하였다. 제안된 방법은 비이컨으로 부터의 거리 정보에 불규칙한 잡음이 있는 환경에서도 실질적으로 사용가능한 지도 정보를 제공하였다. 또한 통상의 최소자승법이나 데드레크닝 방법에 비해서 보다 정확하고 강건하게 로봇의 위치를 추정하였다.
Inevitable response loss under complex operational conditions significantly affects the integrity and quality of measured data, leading the structural health monitoring (SHM) ineffective. To remedy the impact of data loss, a common way is to transfer the recorded response of available measure point to where the data loss occurred by establishing the response mapping from measured data. However, the current research has yet addressed the structural condition changes afterward and response mapping learning from a small sample. So, this paper proposes a novel data driven structural response reconstruction method based on a sophisticated designed generating adversarial network (UAGAN). Advanced deep learning techniques including U-shaped dense blocks, self-attention and a customized loss function are specialized and embedded in UAGAN to improve the universal and representative features extraction and generalized responses mapping establishment. In numerical validation, UAGAN efficiently and accurately captures the distinguished features of structural response from only 40 training samples of the intact structure. Besides, the established response mapping is universal, which effectively reconstructs responses of the structure suffered up to 10% random stiffness reduction or structural damage. In the experimental validation, UAGAN is trained with ambient response and applied to reconstruct response measured under earthquake. The reconstruction losses of response in the time and frequency domains reached 16% and 17%, that is better than the previous research, demonstrating the leading performance of the sophisticated designed network. In addition, the identified modal parameters from reconstructed and the corresponding true responses are highly consistent indicates that the proposed UAGAN is very potential to be applied to practical civil engineering.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.