JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 1, MARCH 2006

93

A Hybrid Active Queue Management for Stability and
Fast Adaptation

Changhee Joo, Saewoong Bahk, and Steven S. Lumetta

Abstract: The domination of the Internet by TCP-based services
has spawned many efforts to provide high network utilization with
low loss and delay in a simple and scalable manner. Active queue
management (AQM) algorithms attempt to achieve these goals by
regulating queues at bottleneck links to provide useful feedback to
TCP sources. While many AQM algorithms have been proposed,
most suffer from instability, require careful configuration of non-
intuitive control parameters, or are not practical because of slow
response to dynamic traffic changes.

In this paper, we propose a new AQM algorithm, hybrid ran-
dom early detection (HRED), that combines the more effective el-
ements of recent algorithms with a random early detection (RED)
core. HRED maps instantaneous queue length to a drop probabil-
ity, automatically adjusting the slope and intercept of the mapping
function to account for changes in traffic load and to keep queue
length within the desired operating range. We demonstrate that
straightforward selection of HRED parameters results in stable op-
eration under steady load and rapid adaptation to changes in load.
Simulation and implementation tests confirm this stability, and in-
dicate that overall performances of HRED are substantially better
than those of earlier AQM algorithms. Finally, HRED control pa-
rameters provide several intuitive approaches to trading between
required memory, queue stability, and response time.

Index Terms: Active queue management (AQM), random early de-
tection (RED), response time, stability.

I. INTRODUCTION

Active queue management (AQM) algorithms help end hosts
make decisions about transmission rates by providing conges-
tion information based on characteristics of a router’s queue.
The advantages of such feedback seem obvious, and the IETF
recommends the use of AQM to reduce loss rate, to support
low-delay interactive services, and to avoid TCP lock-out behav-
ior [1]. The difficulty of configuring AQM algorithms for stable
operation in dynamic networking environments, however, has
prevented them from replacing the traditional tail-drop mecha-
nism in the Internet [2], [3].

A successful AQM algorithm must provide simple, intuitive
means of configuring parameters to achieve stable operation un-
der steady load and rapid adaptation to changes in load. Large
oscillations in queue length, for example, typically result in pe-
riods during which the queue is empty, reducing the utilization

Manuscript received January 3, 2004; approved for publication by Tony Lee,
Division III Editor, November 16, 2005.

C. Joo and S. Bahk are with the School of Electrical Engineer-
ing and INMC, Seoul National University, Seoul, Korea, email: {cjoo,
sbahk}@netlab.snu.ac.kr.

S. Lumetta is with the Department of Electrical and Computer En-
gineering, University of Illinois at Urbana-Champaign, IL, USA, email:
lumetta@uiuc.edu.

of the link. Similarly, an algorithm that fails to adapt to changes
in traffic load or adapts too slowly may perform poorly in the
Internet environment, which is highly dynamic [4]. Finally, an
algorithm capable of meeting the stability and response crite-
ria may remain unused if control parameters are non-intuitive
or inadequate for achieving desired goals. A system may tar-
get a particular queue length based on available memory, or an
administrator may wish to trade between stability and response
time; in either case, the algorithm must provide simple means to
attain these ends.

The most well-known AQM algorithm is the random early
detection (RED) gateway [5]. Stochastic drops allow RED
to avoid global synchronization and bias against bursty traf-
fic when used in conjunction with TCP-based flows regulated
by additive increase/multiple decrease (AIMD) congestion al-
gorithm [6]. RED can also be used in combination with explicit
congestion notification (ECN) [7], in which case RED marks
packets instead of dropping them. For simplicity, we use the
term drop to mean either drop or mark in the remainder of our
paper.

Despite RED’s advantages over tail-dropping, the difficulty
of configuring RED for deployment in a variety of networking
environments has prevented its widespread use. In particular,
RED’s vulnerability to oscillations under steady load has made
it much less attractive [3], [8]-[10].

Numerous AQM algorithms have been proposed to elimi-
nate the drawbacks associated with RED while retaining its ad-
vantages. These efforts include stabilized RED [11], adaptive
RED [12], Blue [13], the PI controller (PIC) [14], random ex-
ponential marking (REM) [15], and the adaptive virtual queue
(AVQ) [16]. In general, these algorithms calculate drop prob-
ability from measurements of queue length and packet arrival
rate, with the goal of ensuring stable operation in dynamic en-
vironments. As more recent algorithms (e.g., PIC, REM, and
AVQ) are known to be stable, the capability to control the queue-
ing delay, the response time to load changes, and the intuitive
value of an algorithm’s parameters become the primary metrics
for evaluation.

In this paper, we introduce and evaluate a new AQM algo-
rithm that combines a RED design with aspects of other AQM
algorithms, such as Blue and the proportional controller [14].
For this reason, we call it hybrid RED, or HRED. HRED ex-
tends RED with a second probability parameter to provide sta-
bility under steady load [17]. It utilizes a self-configuring ad-
justment algorithm to adapt to changes in load. The result is
stable operation with rapid response to change. HRED can be
easily configured to achieve demanded performance of queue-
ing delay, jitter, and response time through its parameters that
are more intuitively meaningful than other AQM algorithms.

1229-2370/06/$10.00 (© 2006 KICS

94

The remainder of the paper is organized as follows. We begin
with an overview of previous work in Section II, briefly cov-
ering a few principles and defining common terminology and
variables. In Section IIl, we outline the HRED algorithm and
explain with a simple analysis how its design satisfies the crite-
ria stated earlier for a successful AQM algorithm. We simulate
HRED and other AQM algorithms in Section IV to evaluate their
behaviors in steady load and in response to load changes. The
results of this section demonstrate that our analytic assessment
of HRED is valid in the simulation environment. We present
results of implementation tests in Section V. After discussing
other relating issues in brief, and we conclude in Section VII.

II. PREVIOUS WORK

RED, as proposed in [5], uses two operations to calculate
drop probability: it first computes an average queue length ¢
using an exponential weighted moving average (EWMA) with
weight w,, then calculates drop probability p from £ using a
fixed linear mapping function. The mapping function has three
parameters: ming,, maxyp, and py,... Average queue lengths
in the operating range [min,;, max,] are linearly mapped to
drop probabilities in the range [0, pyax]. Below ming,, pack-
ets are not dropped, and above maxy,, they are always dropped.
The simplest modification of RED to improve stability is to use
the gentle_ option [18], which eliminates the discontinuity at
max¢p and makes the drop probability function piecewise linear
by mapping the interval between the maximum threshold and
the buffer size, [maxin, Qmax) (OF [maxy,, 2 maxyy)), linearly
to the range [Pmax, 1].

Rather than expanding the linear range, adaptive RED (ARED)
adjusts pmax [12]. It increases pya, when £ gets over maxyy,
and decreases when £ gets below ming,. ARED attempts to de-
couple queue length from drop probability to adapt to a range
of network scenarios, but can not completely remove instability
due to steep slope of the mapping function [17].

The developers of ARED also proposed a new AQM algo-
rithm called Blue [13]. Blue neither averages queue length nor
uses thresholds. Instead, it drops packets according a probabil-
ity independent of queue length, and adjusts the probability in
response to buffer overflow (tail-drop) and underflow (empty)
events. Blue can be implemented very simply, and requires very
little processing power.

PIC applies classical control theory to obtain stability [14].
Based on analysis with linearized models of TCP and RED [§],
PIC is proven to be locally stable. It maintains local stability
by guaranteeing gain and phase margins of the system function.
REM has the same control mechanism as PIC but, instead of
directly controlling the drop probability, it controls price, which
is mapped to the drop probability by exponential function [15].

AVQ maintains a virtual queue with a virtual capacity [16].
On every packet arrival, AVQ updates the virtual capacity from
arrived packet size and interarrival time, and drops the received
packet if the virtual queue overflows. Unlike RED, it regulates
utilization rather than queue length.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 1, MARCH 2006

I1I. DESIGN AND CONFIGURATION

The purpose of AQM algorithms is to maintain high link uti-
lization with low loss rate and queueing delay in a wide range
of network environments [1], [15], [19], [20]. Stable operation
and quick response to changes in load are also desirable [16],
{21]. This section outlines the HRED algorithm and explains
its design in terms of these attributes. We begin with a general
discussion of how AQM algorithms provide control of queue-
ing delay, then provide a simple analysis of local stability, i.e.,
stability under steady load, showing that HRED improves upon
previous algorithms and provides intuitive controls for trading
between buffer size and stability. We next describe the adjust-
ment algorithm adapting to changes in load, and finish the sec-
tion with detailed configurations focusing on global stability.

A. Queuing Delay Control

Two measures of queueing delay are important for AQM al-
gorithms: The expected delay and the expected variance. To
provide independent control of both measures, an algorithm re-
quires at least two parameters. PIC, for example, has only a sin-
gle parameter, gy, for the desired queue length. This parameter
allows straightforward control of the average delay, but variance
in delay depends on parameters of the control algorithm that of-
fer no intuitive relationship to delay.

As delay is proportional to queue length, RED and its vari-
ants bound delay via the queue thresholds when the system is
in steady state. In particular, RED tries to keep delay within
the range [miney /C, maxyy, /C], where C is the link capacity.
HRED uses the same dual-threshold model to control the queue-
ing delay state. As with RED, delay in steady state can vary
within the operating range.

B. Local Stability

AQM algorithms avoid incipient network congestion by pro-
viding feedback to flows in the form of marked or dropped pack-
ets. The system as a whole—including the AQM algorithm,
cooperative end-hosts, and end-to-end delay—forms a closed
feedback system. Through appropriate modeling of each ele-
ment, algorithmic stability can be analyzed and proven. Recent
research, for example, applies a Laplace transformation to lin-
earized models of TCP and designs an AQM algorithm to pro-
vide local stability [8], (10}, [14], [16]. In [9], the nonlinear
instability problem of TCP-RED is analyzed to provide stability
condition for a fixed point. In this section, we employ a discrete
time model to analyze the control system like [9] and prove lo-
cal stability by using the linearization technique. Note that the
linearization of TCP’s congestion avoidance element limits the
proof to LOCAL stability.!

Suppose that a bottleneck link shared by N TCP connections
with the same round-trip propagation delay of RT'T, the ex-
pected window size of each connection is proportional to 1/+/7,
where P is the expected drop probability in steady state [9]-[11],
[23]. These assumptions simplify the N-flow system to a sin-
gle flow feedback system. In steady state (or equilibrium), the

L1t was proved that if a small signal linear model is valid near an equilibrium
and is stable, there is a small region containing the equilibrium where the non-
linear system is stable [22]. We state that the nonlinear system is locally stable
if its linearized model is stable near an equilibrium.

JOO et al.: A HYBRID ACTIVE QUEUE MANAGEMENT FOR STABILITY AND FAST...

queue holds the sum of all connections’ windows minus the data
in flight in the network. Thus, the expected average queue length
£ can be written in terms of P as

=N £_ —C x RIT
VP
where K is a constant of proportionality (i.e., K/+/p is the ex-
pected window size).

For an AQM algorithm to be stable, a deviation from the ex-
pected average queue length at time ¢;, must not lead to a larger
deviation at a later time ¢4 = tx + RTT. More formally, let
¢}, vary from £, by some small amount §/;,, with

ey

L ZZk ~+ 845. 2

The deviation in average queue length increases the drop prob-
ability, which in turn (after an RTT) reduces expected window
sizes and the expected average queue length. For RED, the im-
pact of the deviation in the average queue length is governed by
the mapping function

f — mingy,

P(€) = Prmax €)

maxp, — Ming,

Substituting (2) into (3) at time ¢, we obtain

Oy + 66y, — mingy,
maxp — Mingy,

pmax _ 6£k
maxp, — Mming,

= Dpt Opk-

P(fk) =

pmax
)

After an RT'T, the window sizes reflect the change in p. Substi-
tuting (4) into (1) at time ¢4 1 and expanding the radical linearly
around 7y, (dpx, is small), we find

K

Tasn N—— —CxRIT 5)
* V/Pr + 0px
K K opg
= N—_—CXRTT)—N—_‘_- (6)
(Vi VP 2Dy
_ 7 K opx
TV 2
5 K 1 Pmax
= ¢, —N — - Y4
g VD, 2P, maxy, — ming, k
_ 7 0+ CxRIT Prmax 50
-k 2Dy maxgp, — mingp, F
= 4+ G(Zk) 64. (7

The last step makes use of (1) to rewrite N K /\/p,,. Without the
linearization at fixed point p;, (or Zk) in (6), we will have the
same third degree polynomial of ¢ = 7,1 = ¥ as in [9).

The coefficient G (£x) in (7) denotes the system gain, and indi-
cates how a deviation in RED’s average queue length at time #j,
affects the expected average queue length at time tx4q1. If
|G(%))| < 1, the linearized system is stable because the pertur-
bation near the fixed point decays exponentially. If |G (¢x)] > 1,
the system may be unstable. The ambiguity in the latter state-
ment arises because use of |G(¢;,)| represents a conservative ap-
proximation of system dynamics.

95

Rewriting our stability criterion as a bound on the expected
average queue length helps to illuminate the reasons behind
RED’s instability. Starting from an expansion of |G(f)| < 1,
we can solve the left hand side for Z by using (3), and get

? > CxRTT+ 2 minyy,.

Therefore, RED needs to keep queue size larger than C' x
RTT to be stable, which significantly increases queueing delay.
Breaking the inequality does not necessarily mean that RED is
unstable. In other words, |G(¢)| < 1 is a sufficiency condi-
tion for stability but not a necessary one. The same analysis
holds for ARED; manipulation of py,,x does not affect any of
the equations directly, although it can help reduce the likelihood
of instability when an algorithm does not meet our stability cri-
terion.

HRED meets the stability criterion by introducing another pa-
rameter. The value p.,;, in HRED specifies the drop probability
when ¢ = miny;. The mapping function (3) becomes

£ — minyy,

D= (pmax - pmin) + Pmin (8)

max;p — Minyp
and |G(¢)| is given by

— z—*_ C x RTT Pmax — Pmin
Qﬁ maxgp — minth '

1G()] ©9)

Equation (9) allows the system gain to be controlled through
changes to prax —Pmin t0 ensure that the system is locally stable.
HRED must maintain |G(¢)| < 1 for local stability, independent
of the current drop probability. To obtain this independence, we
set pax according to the equation

1 Pmin

K maXgp

Pmax — Pmin = (maxth - minth) . (10)
The parameter « adjusts the slope of the probabilities and en-
ables tradeoff in design discussed later in this section. We sub-
stitute (10) first into (9) and then (8) to simplify the stability
criterion for HRED as follows

? > C x RTT + 2 miny, — 2k maxy,. (1D

The additional threshold term makes it substantially easier
for HRED to achieve stability than for RED. For instance, by
picking x maxg, — ming, > C x RTT/2, we can make
HRED stable for any feasible value of ¢. Besides, the stability
holds regardless of number of connections unlike other stabil-
ity criteria in [9] and {14]. If we relax this criterion’ for sta-
bility within the operating range, £ > ming,, we need only
K maxy, — ming, > C x RTT/2 for guaranteed local sta-
bility. Substituting reasonable values of the thresholds in terms
of the buffer size into the last inequality (max;, = Qmax/2 and
ming, = Qmax/4), we obtain Qmax > 725 C x RTT. The
probability slope factor » thus allows us to reduce the amount
of memory required for local stability.

2Using the approach of [9], HRED should obey £ + C x RTT < 2x maxsp
to avoid border collision and to achieve stability. This gives a tighter bound than
(11) because £ > mingy.

96

if (g > max)

Pmin = Pmin T Kap(q - maxth)
if (¢ < ming,)

Pmin = Pmin — Kpgp(ming, — q)

— . 1 _Pmin _ :
Pwax = Pmin T 5 mea- (maxe, — Ming,)

Fig. 1. Adjustment algorithm of HRED.

PIC achieves local stability by controlling the gain and phase
margins. In our analysis, we consider only the gain, permitting
a relatively simple if somewhat conservative stability criterion.
The analysis developed for PIC in [8] can be used to validate the
use of our criterion. .

Rewriting the DC gain of the plant function (—C%)—)—,
where RT'Ty represents the propagation delay and the queue-

ing delay, and letting® K = /2 in (1), we obtain ZJ“CQX—;TT,
which is the first term of |G(£)|. Since the second term com-
ing from the mapping function of RED is the same as the DC

gain of transfer-function L,¢q in [8], the DC gain of the system

%Lred is identical to |G(?)|. In the frequency range of

interest, the system approximates to a single pole model and its
gain is less than or equal to its DC gain.

C. Adjustment to Dynamic Traffic Loads

Stability in steady state for a given traffic load is an impor-
tant aspect of AQM algorithms, but a good algorithm must also
maintain stability in dynamic loads. Most AQM algorithms use
the same control mechanism for both steady and dynamic traf-
fic loads, HRED separates them to get fast response time while
retaining other good properties in steady load. The local stabil-
ity conditions derived in the previous section are inadequate for
dynamic traffic loads, as the queue may make buffer overflows
or be empty as traffic changes. In either case, RED and HRED
will lose stability and suffer from high loss rates and low link
utilization [11], [12], [24].

A simple way to adjust to dynamic loads, motivated by
ARED, is to adjust pmin and pmax. However, ARED loses
even local stability under heavy loads because it adjusts only
Pmax [17]. HRED adjusts both probabilities in tandem satisfy-
ing (10). Pseudocode for this adjustment appears in Fig. 1. Be-
fore specifying the algorithm in detail, we present other features
of HRED distinguishing it from RED.

The introduction of the adjustment algorithm separated from
the mapping function not only decouples queue length and drop
probability, but also allows HRED to discriminate between tem-
poral variations and changes in traffic load. For temporal vari-
ation, HRED gets p using (8) and adjusts the range of mapping
to traffic loads by changing pyi, and pmax. RED averages the
queue length to avoid short-term variations from bursty traffic
or temporal congestion [5]. In HRED, however, these short-term
changes can also be handled through adjustment of the probabil-
ities, thus HRED does not need to average queue length. HRED
effectively sets w, = 1, making ¢ equal to the actual queue

3The authors of [8] take Wo2 pg = 2 fora single TCP connection where Wy
and po are expected window size of TCP and drop probability of RED at the
operating point.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 1, MARCH 2006

p max

Pin

Drop probability

min Qax

th max ,,
Instantaneous queue length

Fig. 2. Drop probability mapping function of HRED.

length g. We replace ¢ and £ in previous equations of HRED
with ¢ or §. The removal of averaging is helpful to avoid TCP
synchronization [20] and reduces complexities in analysis.

Another important change from RED is the extension of lin-
ear range in the mapping function. From an observation that
the discontinuity of p at max;p occasionally causes excessive
packet drops and/or leads to instability, we designed HRED to
apply (8) for all values of ¢. Fig. 2 illustrates the mapping func-
tion of HRED.

With removal of EWMA and extension of the linear function,
it is easier to analyze the adjustment algorithm. Since the adjust-
ment algorithm affects response time and can influence global
stability, HRED may exhibit unstable behavior if it is overly ag-
gressive in adjustments. Conservative adjustments, on the other
hand, can lead to lack of responsiveness to change. Stability and
response time thus offer a tradeoff.

Assume that the system is stable with N connections and ex-
pected queue length g.. Let the number of connections increase
abruptly by e N. We consider the necessary change to drop prob-
ability in order to maintain g, 4 at its current value g;. From
(1), we find the desired drop probability 7 , ; to be given by

K
I =1+ N ————
Pirr = (1 +6) G, +C x RIT

1_7;c+1 =(1+ 6)2 D

12)

Then, the drop probability should increase by (1 + €)?p — p =
€(2 + €)p.

We estimate the increment on a packet arrival from the algo-
rithm in Fig. 1. The estimation will show that the algorithm is
designed to control response time independent of current status
and the amount of traffic changes.

Given an increase of N to (1 + €) N, the total incoming traf-
fic rate increases from C to (1 + €)C and, in turn, the queue
length for an interval T}, increases by ¢CT,,, which corresponds
to (¢ — maxyy,) in Fig. 1.* As drop probability is updated on ev-
ery packet arrival, the increment of drop probability for T, must

4We implicitly make two assumptions. First, we assume a SUDDEN increase
in the traffic rate. If a gradual increase is assumed, the added queue length
should be halved. Second, we assume that p does not change, which does not
hold if T, > RT'T. We restate it in the next section.

JOO et al.: AHYBRID ACTIVE QUEUE MANAGEMENT FOR STABILITY AND FAST...

satisfy (14 90T
+e€ a
S

where S is the average packet size, and the fractional factor in
the equation gives the average number of arrivals for 7,,, and
the right hand side € (2 + €) p is the targeted increment of drop
probability. From (13), we then obtain

Kop (eCTy,) =e(2+¢€)p (13)

S 24 ¢

«E ———s — 14
(CT.)* 1+e¢ o
which can be approximated by (—C%S—)g fore < 1.
Similarly,
2 - 28
Ko 0 27¢€ . (15)
(CTg)"1—€ (CTp)

From (14) and (15), the response time of HRED can be con-
figured through 7., and T}, and independent of the amount of
traffic change.

D. Configuration

In this section, we discuss detailed configuration of parame-
ters in HRED focusing on stability of the adjustment algorithm.
Although response times are presented by T}, and T, they are
not equal if T;, and T} are larger than one RTT. An RTT after
traffic changes, the incoming rate is adjusted and (13) no longer
holds. The adjusted rate is less than (1 + €)C and closer to the
link capacity C. It takes longer than 17, and T} for HRED to get
the target drop probability. We loosely represent the response
time, nevertheless, in terms of Ty, and Tz even if they are larger
than one RT'T'.

Let RTT™ be the largest average round-trip time in the sys-
tem. Conservative configuration of HRED bounds the minimum
of T, and Tjg to RTT™ in order to remove possible overshoots
in the drop probability.’ Otherwise, HRED may be unstable and
make large variations of queue length.

If there is no packet drop from buffer overflow, the conser-
vative configuration is also helpful to avoid oscillation. The
oscillation in this case comes from wrong rate control. Overly
increased or decreased drop probability makes sources react
in their rates exceedingly, and causes repeated oscillations of
queue length with large variation.

However, when packets are dropped from buffer overflow, the
conservative configuration is not sufficient to achieve stability.
The instability may occur because the drop probability calcu-
lated from the queue length is not consistent with the actual
drop probability, which mainly depends on packet drops from
buffer overflow. This can happen when a large number of con-
nections are suddenly established and the adjustment algorithm
fails to follow. When the drop probability p is severely under-
estimated, the overly increased traffic can bring packet drops
from buffer overflow before HRED adjusts p correctly. Packet
drops result in a sudden traffic decrease due to AIMD of TCP
congestion algorithm. The oscillation will be repeated unless
the gap between the estimated drop probability and the actual

5At the same time, they also should be as small as possible for HRED to be
effective following the controlled system [29].

97

drop probability shrinks. On the other hand, a sudden removal
of established connections does not trigger the oscillation be-
cause overestimated drop probability does not result in buffer
overflow.

Asymmetric configuration of HRED provides a simple way
to remove the instability. Since the increment of the drop prob-
ability depends on Qp,.x — maxy, and 7, while the decrement
depends on min, and T3, we can make the estimated drop
probability catch up with the actual drop probability by keep-
ing (Qmax — Maxg,) > ming,. After a few rises and falls of
queue length, the gap between them disappears. One alternative
to achieve stability is to give additional increment of the drop
probability to every buffer overflow like Blue. Another is to
monitor the actual drop probability and set the estimated drop
probability to it when there is a significant difference between
them.

We use the asymmetric configuration of (Quax — maxy,) =
2 miny, and T, = 2 T throughout our simulations and tests.
The former removes instability, and the latter speeds up respon-
siveness in case of traffic decrease, helps HRED achieve full link
utilization, and compensates for relative delay in response re-
sulting from the former. Although the heuristics of conservative
and asymmetric configurations do not guarantee global stability
of HRED, we use them as an alternative to improve stability.

Previous discussions are implicitly restricted to the case of
traffic of long-lived connections, but in reality there are many
short-lived connections such as HTTP in the Internet. In HRED,
itis possible to estimate the amount of short-lived traffic that can
be handled.

Since HRED retains the advantages of AQM provided that ¢
remains in [0, Qmax], We can estimate the tolerance of system
based on the extended linear range and the removal of averaging.
Suppose that the system is stable with IV connections and the
expected queue length g, at time ¢x. Let ¢V be an amount
of traffic added or removed abruptly. We use (1) to obtain the
maximum of ¢ that does not make buffer overflow. In the new

equilibrium at time t5 1, we have g, | < %\’ﬁ —CxRIT
k
because Py ; is less than p;. Since g, should be less than

Qmax to avoid overflow, the right hand side of the inequality is
bounded by Q.. Replacing \1}—; with g, +C x RTT from (1),
k

we can express a bound on o as qu"_q’“ Similarly we get a

. wFCXRTT"
different bound %Tq’;mf that prevents the queue from being

empty. Combining these two bounds, we have

Qmax-q @
G+CxRTT g+ C x RIT)~

o< min(

The left restriction prevents buffer overflow and the right under-
flow. Minimizing the equation over § within the operating range
of [mingy, maxsp], we obtain

Qmax — maxgp ming,
maxy, +C x RTT ming, +C x RTT)
(16)
This shows the algorithm’s limit in handling rapid changes.
HRED maintains stable control and retains the advantages of
AQM as far as changes in load satisfy (16).

o< min<

98

—m— Omax = 200 kB
---e-- Omax = 300 kB
§ sl A& Omax=400kB
Q7 --v--- Omax = 500 kB
~
k=
2 06
2
>
=
]
0.4 T | | R .
g' L D = V=2 ¥
=
Z 02
0.0 T T T T T T —T T
100 200 300 400 500 600
Traffic
@
0.5+
—a— Omax = 200 kB
---8--- Omax = 300 kB
. 044 4 Omax =400kB
Q)E ---¥--- Omax = 500 kB
g
§ 034
]
=
o
= 0.2+
o
3
°
g
& 014
0.0 T T T T T T T
100 200 300 400 500 600
Traffic
(b}

Fig. 3. Steady state properties of HRED with various buffer sizes: (a)
Average queue length, (b) standard deviation of queue length.

The tradeoff in queue parameters is now clear. If we bring
max.p, closer to (Jinax to improve local stability by using lim-
ited memory from (11), we do so at the expense of some amount
of short-lived traffic and global stability. Increasing max;, from
3 Qmax 10 3 Qnmax, for example, reduces the buffer size require-
ment for local stability to @{4_—1 C x RT'T, but it raises the risk
of instability and cuts the maximum value of o by more than
two thirds.

E. Summary

Although HRED introduces an additional parameter for con-
trol, its behavior is an intuitive and predictable function of its
parameters. Equation (10) specifies the general form of the re-
lationship between the probability parameters, with which an
administrator can trade between buffer size, local stability, and
variation of queue length.

For stability and quick response, HRED removes EWMA of
RED and extends linear range in the mapping function. Local
stability is analytically proven using a linearized model of TCP.
Response time is designed to be independent of the amount of
traffic changes and represented by T, and T}z, which are con-
figured conservatively and asymmetrically for global stability.
Guaranteeing global stability of the system is left for future
work.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. . MARCH 2006

2 084
ot
~
<=
ey 0.6
5
2
Q
B
g 04
=]
(o]
0!
<
5 02
g o
<
0.0 T T T T T T T T T
100 200 300 400 500 600
Traffic
@
1.0
3 084
£
oY
~
k=
oy 0.6
=)
=
° 1 .-
B
0.4 .
3 i
] v-
e ..
e
[0.2 4 -
> e
z ..
S P .
00 L T T T T T M T
100 200 300 400 500 600
Traffic

®

Fig. 4. Average queue length: () Qmax = 300 kB, (b) Qmax = 500 kB.

IV. SIMULATION COMPARISON

This section uses the ns-2 simulator [25] to compare HRED
with RED, Blue, PIC, REM, and AVQ. We first explore queue-
ing delay by measuring queue length and standard deviation in
steady load. The results corroborate the analytic claims of the
previous section, demonstrating that RED fails to impose ad-
equate control on queueing delay. We also investigate robust
properties of AQM algorithms and avoidance of TCP lock-out
behavior. We next compare the dynamic behaviors of AQM al-
gorithms in terms of link utilization and response time to load-
ing changes. We observe that HRED provides faster and more
predictable response times without hurting utilization,

Except where otherwise specified, the simulations are based
on a dumbbell topology in which all connections traverse a sin-
gle bottleneck link with capacity 45 Mbps. The bottleneck link
queue operates in byte mode with buffer size of 300 kB. We
assign a random round-trip time of 40 to 200 ms to each con-
nection (uniform distribution), which includes everything except
queueing delay at the bottleneck. One set of random RTTs is
used in all experiments. Average packet length is 500 bytes.
AQMs are configured as recommended’ in [5), [13], [14], [16],

S RT'T+ should be equal to or larger than RT'Ty for all TCP connections,
where RTTy includes propagation delay and queueing delay [14].
"Blue is configured to have finer granularity of the drop probability than the

JOO et al.: AHYBRID ACTIVE QUEUE MANAGEMENT FOR STABILITY AND FAST...

99

Table 1. Configurations of active queue management algorithms for simulation.
| 1 Queue parameters | Criteria for adjustment [
RED ming, = smaxn = Qmax wy = 0.002, Prax = 0.1
Blue dl =0.0002, d2 = 0.00002, freeze_time = 10 ms
PIC Gref = 3 Qmax RTTT =200 ms,° N~ = 100, 160 Hz sampling
REM = 2Qmax a=0.1,v=0.001, ¢ = 1.001, 1 kHz sampling
AVQ a=0.15v=1.0
HRED ming, = 3mMaxy, = 1Qmax k= 2,T, = 400 ms, Tg = 200 ms
0.5
1 , w ’. n| IH H‘m“ ;m '
o] A My | i
g "l,'H! H‘ 1‘ i E \ 1 ‘/ ' ,"l‘l'
S Dkl Al ']
g 034 a v
ﬁ§ e, (b) (c)
% 021 : SR SO Fig. 6. Instantaneous queue length of REM with Qmax = 500 kB in
.‘.; : different traffic loads: (a) 100 rraffic, (b) 300 traffic, (c) 600 traffic.
G oq * W g T
U e
00 . B T T M The horizontal axis with the unit traffic reports both the num-
100 200 300 400 500 600 ber of FTP connections and the arrival rate of WEB sessions
Traffic with Poisson distribution. For example, 300 traffic means that
(a) 300 long-lived FTP connections are established and WEB ses-
sions arrives at 300115 sessions per second.
937 —=—RED Fig. 3 illustrates the properties of HRED in steady load. With
~—e- Blue various buffer sizes, it succeeds in keeping average queue length
5 047 : I;IECM constantly to the value of %(minth + maxyy,) corresponding to
o e AVQ 0.375 after normalization. HRED also has small deviation grad-
S 034 P wtos HRED ually decreasing as traffic and buffer size increase. Its queue-
:’§ v ' ’ ... ing properties are independent of traffic loads and queue size
S 024) v in comparison with other AQM algorithms. The independence
g leads to less jitter as the load fluctuates in various network envi-
§ o1 PR S R 3 ronments.
g We also run simulations for comparision with other AQM
o . . . T?\; algorithms. Figs. 4 and 5 respectively present average queue
100 200 300 400 500 600 length and standard deviation when the buffer size is 300 kB and
Traffic 500 kB. We can confirm that RED does not decouple congestion
(b) measure from performance measure [15], [19]. Average queue

Fig. 5. Standard deviation of queue length: () Qmax = 300 kB, (b} Qmax
=500 kB.

[26], [27], with the gentle_ option enabled for RED. The de-
tails of configuration are given in Table 1.

A. Steady State Behavior

We monitored average queue length and standard deviation
over a period of 50 seconds after the initial 150 seconds. The
load consists of a combination of long-lived greedy FTP con-
nections and WEB sessions. Each WEB session consists of 10
HTTP transfers and its length follows a Pareto distribution with
the mean of 10 packets and the shaping parameter of 1.2. The
simulation results for different traffic loadings, in which the loss
rates range from 0.005 to more than 0.1, appear in Figs. 3-5.

recommended configuration, with which Blue has oscillatory behaviors due to
coarse granularity.

length of RED increases linearly as traffic increases. However,
in terms of deviation, RED presents better performance than
Blue, PIC, and REM.

Since Blue does not change a drop probability unless the
queue is overflow or underflow, its average queue length is arbi-
trary and independent of the amount of traffic. In standard devi-
ation, Blue has large variation and can not control queue length.
Therefore, neither average queue length nor standard deviation
is under control in Blue.

Fig. 4 also shows that PIC and REM successfully maintain
queue length at a target value. Both always try to find a proper
drop probability for the target queue length using the same
controller. However, in Fig. 5, they have as large deviation
as or even more than Blue and show their limit in controlling
queue length. The non-monotonic behavior of REM in devia-
tion comes from the nonlinear characteristics of the system. As
the drop probability p,, gets larger, a perturbation dpy, takes less
effect on queue length ;. ; from (6). Fig. 6 illustrates instanta-

100

)
a8
o

2254

h (kB

—
(4]
S

~
[

Queue lengt

. S .
0 20 40 B0 8O0 100 120 140 160 180 200

Time (sec)
(@
8300
o~ J
N
S 225
o0]
=
2 (504 e - - RIEHE R
° |
S 5] !
7 |
0 (i
¥ T T T T T T ¥ T T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200
Time (sec)
®
300
—~
E 4
225
k=
o0
=
2
Q
=
(5}
=
o

0 26 40 60 80 100 120 14 160 180 200
Time (sec)

()

300

gzzs

=

2150

]

Q

3 75

=

<%

i ¥ T T T T T T T T T T T T T T T T T T 1
20 40 60 80 100 120 140 60 180 200
Time (sec)
@

Fig. 7. Instantaneous queue length of AQM algorithms. WEB traffic is

added to FTP traffic at 100 sec: (a) Blue, (b) PIC, (c) AVQ, (d) HRED.

neous queue lengths of REM with 500 kB buffer size in different
traffic loads. In light load of 100 traffic, queue length hardly in-
creases over 300 kB. It largely decreases at an increase of drop
probability due to a small p,. As P, increases with traffic loads,
the reduced effect of dpy, on queue length allows it to swing from
top to bottom of the buffer as shown in Fig. 6(b). It results in
the largest deviation in Fig. 5(b). With more traffic loads, how-
ever, REM gets control of queue length and reduces oscillatory
behaviors.

The difference between PIC and RED comes from different
mapping of congestion measure to drop probability. Another
reason is that the recommended configuration of REM in [27] is
not suitable to this network environment. This implies that REM
still has configuration problems. Throughout extended simula-
tions, whose results are not shown due to lack of space, we ob-

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 1, MARCH 2006

030+
—a—RED
025 | —®Blue
% 4--PIC
E
- AV 4

9 0.20] Q °
= +-— HRED A
£ T e
2 0.15 o A
2 ,
o
T o0
=
£
=
@ 0,054

0.00 T T T T T T T —T T 1

0 10 20 30 40 50 60
Average arrival rate of WEB traffic (sessions/second)
Fig. 8. Robustness of AQMs algorithms to WEB traffics.

serve that REM can have similar standard deviations to PIC with
smaller v. We exclude REM afterward from simulation results
because its large deviation is intolerant, and with smaller ~, its
properties are close to that of PIC.

The behavior of AVQ is interesting. It always tries to keep
queue length as small as possible without hurting utilization.
Therefore, queue length of AVQ is the smallest in Fig. 4, but can
not be controlled to a desired queue length. Another weakness
of AVQ resides in scalability to light loads. Since it fails to
keep small deviation at light loads, it increases average queue
length in order to not hurt utilization. To make things worse,
this can not be cured by increasing buffer size as shown in Fig. 5,
because AVQ is a totally rate-based control algorithm.

In the next experiment, we verify robustness of AQM algo-
rithms to short-lived TCP connections such as WEB traffic. It
is important because most AQM algorithms including HRED
proved their local stability through the linearization of TCP con-
gestion control algorithm. We start simulation with 300 long-
lived FTP connections and add, after 100 sec, WEB traffic that
has average arrival rate of 25 sessions per second.

Fig. 7 illustrates instantaneous queue lengths of Blue, PIC,
AVQ, and HRED. We omit RED that has similar results with
HRED. The variations before 100 sec comes from heteroge-
neous network environments of different RTTs and packet sizes
between connections. Following buffer overflow at 100 sec,
Blue and PIC have large swings of queue length. On the con-
trary, AVQ has rather less variation after addition of WEB traf-
fic. It makes AVQ more attractive with heavy load of WEB traf-
fic. In case of HRED (and RED), it still holds queue length
mostly in the operating range of [min,, maxyp].

To make the difference clear, we measure standard deviation
of queue length changing the amount of WEB traffic. The sim-
ulation results are shown in Fig. 8. With no WEB traffic, all
AQM algorithms operate stably with normalized standard devi-
ation of less than 0.11. AVQ shows the most outstanding perfor-
mance. Even though traffic variation increases with additional
WEB traffic, it has less deviation. Blue and PIC are unable to
manage increased traffic variation and have large deviation as an
outcome. It can be critical especially in dynamic traffic loads of
Internet. RED and HRED show good performance. They man-
age queue length by preventing it from going beyond min,; and
maxyy, and thereby restrict deviation while controlling average

JOO et al.: AHYBRID ACTIVE QUEUE MANAGEMENT FOR STABILITY AND FAST...

Queue length (kB)
o

T Y T
0 20 40 B0 80 100 120 140 160 180 200

Time (sec)
@
3:
= ' ‘ ‘I | I i
215 | b b [TTTLY N N
Lo | ‘ ! I'l '| |
g 7 1 | WA | __ 1 bl (SN | L A i |
g 5] ' Iyl i i M ﬁ\ “
154 o T T T | L UL S| | Hl' i‘
0] 20 44 60 80‘ 10c 120 140 160 180 200
Time (sec)
(b)
30
g5
4 22
= 5 |
e 15 | A \
g]
o 7
& o4 L LAl . 4]
o 50 40 60 8¢ 100 {20 140 160 {80 200
Time (sec)
©
~30
o
=22 1y
§D 5
=15
Lo
g1
=
v e - - r @
0 20 40 60 80 1.00 120 140 160 180 200
Time (sec)
(d)

Fig. 9. Instantaneous queue length of AQM algorithms. Traffic increases
at 100 sec and returns at 150 sec: (a) Blue, (b) PIC, (c) AVQ, (d)
HRED.

Table 2. Goodput percent of TCP connections of 20 ms RTT.

| [RED | Blue [PIC | AVQ [HRED |
[%] 769 | 738 | 762 [897 | 760 |

queue length.

As the last experiment for steady state behavior, we compare
AQM algorithms in relative goodput between connections of
two different RTTs. We establish two groups of connections.
One has 20 ms RTT and the other 200 ms RTT. Each group con-
sists of 150 FTP connections and all connections share a single
bottleneck. All AQM algorithms achieve the total goodput of
more than 99% of bandwidth.

We illustrate the percent goodput of short RTT connections
out of total goodput in Table 2. AVQ weighs short RTT connec-
tions than the other AQM algorithms. Since AVQ does not main-

101
1.00 - —
g 0,904 ——— 10% traffic change
= oss] | 30% traffic change
- - 50% traffic change
0.804,
0.0 T T T T T T T T T 1
60 80 100 120 140 160 180 200
Time (sec)
(@)
=
8= —— 10% traffic change
g 1 | — 30% traffic change
'5 -------- 50% traffic change
T T T T T T T T 1
80 100 120 140 160 180 200
Time (sec)
(b)

0.95
=
2 090 ——— 10% traffic change
8 oossl | 30% traffic change
b ene
5 080 50% traffic change

0.0 ES

B T T T T T 1 T T T T T 1
60 80 100 120 140 160 180 200
Time (sec)
©

1.00
g 0.95
S 0.90+ —— 10% traffic change
N
= 065 oo ggz;o traglc cll:ange

""""" o tratfic change

= 0.801. £

0.0 T T T T T T T T T T v 1

60 80 100 120 140 160 180 200
Time (sec)
@)

Fig. 10. Link utilization of AQM algorithms. Traffic increases at 100 sec
and returns at 150 sec: (a) Blue, (b) PIC, (c) AVQ, (d) HRED.

tain drop probability internally and drops a packet when the vir-
tual queue overflows instead of random dropping, it more likely
drops a packet from bursty traffic. Comparing with tail-drop
algorithm, in which the goodput of short RTT connections oc-
cupies 91.6% of the total, AVQ without random dropping does
not relieve unfairness that comes from different RTTs and leads
to TCP lock-out behavior, in which TCP connections of short
RTT occupy most queue space preventing others from getting
in.

The experiments demonstrate that only HRED manages to
provide stable, predictable queueing delay. RED, Blue, PIC,
REM, and AVQ fail in some network environments through os-
cillatory behavior and/or lack of queue-length tractability.

B. Dynamic Behavior

We next examine behaviors of AQM algorithms in dynamic
traffic loads. In order to have intuition about the effects of dy-
namic loads on performance, it is worth while to observe in-

102
100
80
o5 60+ A
3
R
) L
g 404 ¥y
= e =
20 .o e
0 T T T
30% 40% 50%
Traftic increase
(@)
100
80 A
~ 60
Q9
[A
Q e (TSR L]
E
[
..
20 e
e I
o v T T T ?
10% 20% 30% 40% 50%
Traffic decrease
(b)
Fig. 11. Response time of AQM algorithms: (a)} After traffic increase, (b)

after traffic decreas.

Sender AQM gateway Delay gatewa Recelver

=

Bl - T]
100 Mbps J 10 Mbps ! 100 Mbps o
Pentium T Athlon Athlon Pentium I1

500 MHz

1.3 GHz

266MHz

Fig. 12. Topology of implementation test.

stantaneous queue length of each algorithm in dynamic loads.
We start our simulation with 300 long-lived FTP connections
and WEB traffic having the arrival rate of 25 sessions per sec-
ond. The total traffic increases by 30% at 100 sec and returns
at 150 sec. Fig. 9 illustrates instantaneous queue length of each
AQM algorithm.

With traffic increase, Blue builds up queue length and adjusts
the drop probability when buffer overflows. After the adjust-
ment, it still keeps large queue length because it can not handle
queue length. For the same reason, it has small queue length af-
ter traffic decrease at 150 sec. PIC, though it can handle queue
length at traffic changes, adjusts drop probability so slowly that
it takes queue length away from ¢,.¢ for a while.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 1, MARCH 2006

During the adjusting period, there are significant performance
degradations in Blue and PIC. They lose advantages of AQM
such as low delay and avoidance of lock-out behavior while
buffer overflows, and fail to achieve full link utilization while
the queue is empty. Figs. 10(a) and 10(b) ensure that the traffic
decrease hurts link utilization in Blue and PIC.® The larger the
amount of change is, the longer it takes for them to achieve full
utilization.

On the contrary, AVQ and HRED have quick responses and
advantages of AQM. In Fig. 9(c), we can observe that AVQ has
a sharp rise of queue length at 100 sec but it decreases soon
without buffer overflow. At 150 sec, it is even hard to figure
out the effect of traffic decrease but there is a slight increase of
variation. In case of HRED in Fig. 9(d), a sharp rise and fall of
queue length at 100 sec and 150 sec disappear quickly without
performance degradation. Figs. 10(c) and 10(d) also confirm
that AVQ and HRED fully utilize the bottleneck link.

Since fast response is essential to avoid performance degra-
dation, we further concentrate on response time. We estimate
response time by measuring the time when standard deviation of
queue length after traffic change is less than 1.5 times of that in
steady state. The results are shown in Fig. 11. We measure and
average the response times of five simulation runs. As shown
in Fig. 11, AVQ and HRED respond quickly regardless of the
magnitude of traffic changes. However, PIC not only responds
slowly but also shows proportional increase of response time to
traffic changes. The latter states that it responds slowly with
large traffic changes even though it is reconfigured for quick
response at the cost of stability and robustness. Hence, we con-
clude that AVQ and HRED are superior to PIC in terms of re-
sponse time. The response time of Blue varies irregularly be-
cause it has large deviation even in steady load.

V. IMPLEMENTATION

In this section, we explore operability of AQM implementa-
tions in testbed. The testbed consists of 4 machines as shown in
Fig. 12. AQM algorithms operate in AQM Gateway before the
bottleneck link of 10 Mbps. The delay gateway plays a role of
increasing the network capacity by inserting 100 ms delay into
connections. Since all links are Ethernet, a separate feedback
link is added for ACKs to return to the sender without collid-
ing with data packets at the link layer. AQM algorithms are
implemented on Linux kernel 2.4.9. Fixed-point approximation
is applied to remove floating-point computations and to reduce
processing loads. The configurations are the same as for the
simulation except RTT+ = 100 ms, N~ = 30, 100 Hz sam-
pling in PIC; 100 Hz sampling in REM; v = 0.975 in AVQ; and
T, = 200 ms, Tz = 100 ms in HRED.

We generate traffic as a mixture of long-lived greedy FTP
connections and short-lived FTP connections. The short-lived
connections arrive with Poisson distribution and each transmits
10 packets. All packets are 500 bytes in length. The z-axis
in Fig. 13, which illustrates the test resuits, presents number of

8We omit the results before initial 50 seconds. Since we can not set initial
parameter for AQM algorithms on equal terms, we can not fairly compare their
initial behavior. For example, though we can set initial drop probability for PIC,
we can not for AVQ.

JOO et al.: A HYBRID ACTIVE QUEUE MANAGEMENT FOR STABILITY AND FAST..

x
g 0.8
o}
=
T 06
2 M T . O e
R . '3 .
[
8
g 04-
=3
[
an
~
53 0.2 4
s o
<
0.0 T B e o T T
40 50 60 70 80 90 100 110 120 130
number of long-lived FTP connections
(@)
1.0
0.8
= 064
2
3
N
= 044
=l
0.2+
0.0 T T 7 T 1 1

T T T 1
60 70 80 20 100 110 120

number of long-lived FTP connections

(©)

40 50 130

Fig. 13. Characteristics of AQM implementations with buffer size of 50 kB:

utilization, (d) loss rate.

long-lived connections along with average arrival rate of short-
lived connections: 50 in z-axis implies that 50 long-lived con-
nections are being serviced and 50% short-lived connections are
arriving per second. :

Generally, (a) average queue length and (b) standard devia-
tion are similar to those of Fig. 4, and we can lead the same
conclusion as before. The differences from simulations come
from fixed-point approximations of AQM algorithms. One is
that RED does not build up queue length at all with 50 and
60 connections, and fails to achieve full link utilization with
high loss rate. The other is that AVQ increases queue length
again with 100 and 120 connections.

Figs. 13(c) and 13(d) show link utilization and loss rate. The
link utilization is measured by dividing the number of forwarded
bytes for a given period by the link capacity. It can not reach up
to 1.0 due to the packet overhead of MAC and TCP/IP header.
As shown in Fig. 13(c), all AQM implementations achieve full
utilization in steady state except RED. The loss rate is estimated
by dividing the number of packet drops by the number of packet
arrivals. From Fig. 13(d), it is evident that RED and AVQ have
higher loss rate than the others. While the high loss rate of RED
results from fixed-point approximation, that of AVQ comes from
small queue length and its bias against bursty traffic.

103

0.5

0.4+

max

0.3

0.2 g

Standard deviation / Q

0.1 4

0.0 »

ha M - ? T T T T 1
40 60 90 100 110 120 130
number of long-lived FTP connections

b)

0.20 4
0.16
0.12

0.08 -

Loss rate

0.04

% 100 10
number of long-lived FTP connections

(d

(a) Average queue length, (b) standard deviation of queue length, (c) link

VI. DISCUSSION

AQM marks packets instead of dropping when it is used with
ECN. There are studies investigating the effects'of AQM that
is ECN capable [13], [14], [28], which can be also applied to
HRED. It is observed that AQM with ECN operates similarly
but rarely has packet drops. AQM and ECN can be compared
with explicit control protocol (XCP) proposed by Katabi et al.
in [29}. XCP generalizes ECN and decouples utilization con-
trol from fairness control with help of additional information
in congestion header. Both ECN and XCP need cooperation of
end-host and routers, and can be effective when all routers in the
path have the capability.

There are other new AQM algorithms that we do not treat in
this paper. An AQM based on sliding mode variable structure
control (SMVS) is one of them [21]. Since SMVS is insensitive
to system dynamic parameters, it outperforms PIC in responsiv-
ity and robustness against the disturbance. A modified ARED is
also proposed in [19]. By using AIMD algorithm to adapt py,ay
and controlling queue length at a target value, it maintains a pre-
dictable average queue size and reduces parameter sensitivity.

104

VII. CONCLUSIONS

We have presented the design and analysis of hybrid RED.
HRED can be easily configured to meet requirements for queue-
ing delay, jitter, and response time through its parameters, which
are easier to understand and more intuitively meaningful than
other AQM algorithms. HRED takes over dual-threshold model
to control the queueing delay, and employs a linear mapping
from instantaneous queue length to drop probability across all
values of queue length. It also decouples queue length manage-
ment from adaptation to dynamic load, handling changes in load
with a simple control algorithm.

We provided a simple analysis to derive stability criteria for
HRED, illustrating that the conservative and asymmetric config-
uration can be used for stable operation. We also derived a rela-
tionship of control parameters with stability, the tolerant amount
of short-lived connections, and the response time to changes in
load, allowing tradeoffs among them.

Simulation and implementation results for several AQM al-
gorithms demonstrated that HRED is less dependent on traffic
loads than other AQM algorithms, and is robust to WEB traffic
while providing stable, predictable queueing delay. The sim-
ulation results also illuminate the differences in response time
between Blue, PIC, AVQ, and HRED. While PIC and HRED
are provably stable, response times of HRED are much better
than those of PIC in dynamic traffic loads. Although AVQ is
also stable and has quick response time, it does not provide a
simple means to control delay and jitter, and it has queue prop-
erties that are dependent on traffic loads, and can not avoid TCP
lock-out behavior.

ACKNOWLEDGEMENTS

This research was supported in part by the University IT Re-
search Center Project and the ubiquitous Autonomic Computing
and Network Project, Ministry of Information and Communica-
tion, in Korea, and by National Science Foundation grant ACI-
9984492,

REFERENCES

[1] B.Braden, Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang, “Rec-
ommendations on queue management and congestion avoidance in the in-
ternet,” RFC 2309, Apr. 1998.

[2] M. May, I. Bolot, C. Diot, and B. Lyles, “Reasons not to deploy RED.” in
Proc. IWQ0S’99, June 1999.

[31 M. Christiansen, K. Jeffay, D. Ott, and F. Smith, “Tuning RED for web
traffic,” in Proc. SIGCOMM 2000, Sept. 2000.

4] V.Paxson, “End-to-end Internet packet dynamics,” IEEE/ACM Trans. Net-
working, vol. 7, no. 3, June 1999.

[5] S.Floyd and V. Jacobson, “Random early detection gateways for conges-
tion avoidance,” [EEE/ACM Trans. Networking, vol. 1, no. 4, Aug. 1993.

[6] V. Jacobson, “Congestion avoidance and control,” in Proc. SIGCOMM 88,
Aug. 1988.

{71 K. Ramakrishnan and S. Floyd, “A proposal to add explicit congestion
notification (ECN) to IP” RFC 2481, Jan. 1999.

{8] C. Hollot, V. Misra, D. Towsley, and W. Gong, “A control theoretic analy-
sis of RED,” in Proc. INFOCOM 2001, Apr. 2001.

[91 P Ranjan, E. Abed, and R. La, “Nonlinear instabilities in TCP-RED,” in

Proc. INFOCOM 2002, June 2002.

S. Low, F. Paganini, J. Wang, S. Adlakha, and J. Doyle, “Dynamics of

TCP/RED and a scalable control,” in Proc. INFOCOM 2002, June 2002.

[10]

{111 T. J. Ott, T. V. Lakshman, and L. H. Wong, “SRED: Stabilized RED,” in
Proc. INFOCOM’99, Mar. 1999.
[12] W.Feng, D. Kandlur, D. Saha, and K. Shin, “A self-configuring RED gate-

way,” in Proc. INFOCOM’99, Mar. 1999.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 1, MARCH 2006

[13] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Blue: An alternative ap-
proach to active queue management algorithms,” in Proc. NOSSDAV 2001,
June 2001.

[14] C. Hollot, V. Misra, D. Towsley, and W. Gong, “On designing improved

controllers for AQM routers supporting TCP flows,” in Proc. INFOCOM

2001, Apr. 2001.

S. Athuraliya, V. Li, S. Low, and Q. Yin, “REM: Active queue manage-

ment,” IEEE Network, May 2001.

S. Kunniyur and R. Srikant, “Analysis and design of an adaptive virtual

queue (AVQ) algorithm for active queue management,” in Proc. SIG-

COMM 2001, Aug. 2001.

[17] C.Joo, and S. Bahk, “Scalability problems of RED,” IEE Electron. Lett.,
vol. 38, no. 21, Oct., 2002.

[18] S.Floyd, “Recommendation on using the gentle variant of RED,” available
at http://www.aciri.org/floyd/red/gentle.html, Mar. 2000.

[19] S. Floyd, R. Gummadi, and S. Shenker “Adaptive RED: An algorithm

for increasing the robustness of RED’s active queue management,” under

submission, Aug. 2001.

M. May, T. Bonald, and J. Bolot, “Analytic evaluation of RED perfor-

mance,” in Proc. INFOCOM 2000, Mar. 2000.

[21] F Y. Ren, X. H. Yin, Y. Ren, and F. B. Wang, “A robust active queue
management algorithm based on sliding mode variable structure control,”
in Proc. INFOCOM 2002, June 2002.

[22] G. Franklin, J. Powell, and A. Emami-Naeini, Feedback Control of Dy-

namic Systems, Addison Wesley, 3rd ed., 1994.

J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP through-

put: A simple model and its empirical validation,” in Proc. SIGCOMM 98,

Sept. 1998.

V. Firoiu and M. Borden, “A study of active queue management for con-

gestion control,” in Proc. INFOCOM 2000, Mar. 2000.

The UCB/LBNL/VINT Network Simulator (NS), available at http://www-

mash.cs.berkeley.edu/ns.

S. Floyd, “RED: Discussions of setting parameters,” available at

http://www.aciri.org/floyd/REDparameters.txt, Nov., 1997.

[27] S. Athuraliya, “A Note on parameter values of REM with Reno-like al-

gorithms,” available at http://netlab.caltech.edu/pub/papers/REMparamet

er.pdf.

P. Bagal, S. Kalyanaraman, and B. Packer, “Comparative study of RED,

ECN and TCP rate control,” Technical Report, Mar. 1999.

D. Katabi, M. Handley, and C. Rohrs, “Internet congestion control for

future high bandwidth-delay product environments,” in Proc. SIGCOMM

2002, Aug. 2002.

[15]

[16]

{20]

[23]

[24]
(25]

[26]

[28]

(291

Changhee Joo received B.S., M.S., and Ph.D. degrees
in electrical engineering and computer science from
Seoul National University in 1998, 2000, and 2005,
respectively. From 2005, he is working with the de-
partment of electrical and computer engineering, Pur-
due University as a researching staff. His interests are
protocol design and performance analysis in commu-
nication networks.

Saewoong Bahk received B.S. and M.B. degrees in
electrical engineering from Seoul National University
in 1984 and 1986, respectively, and the Ph.D. degree
from the University of Pennsylvania in 1991. From
1991 through 1994, he was with the department of
network operations systems at AT&T Bell Laborato-
ries as an MTS where he worked for AT&T network
management. In 1994, he joined the school of elec-
trical engineering at Seoul National University and
currently serves as a professor. His areas of inter-
ests include performance analysis of communication
networks and network security.

JOO et al.: A HYBRID ACTIVE QUEUE MANAGEMENT FOR STABILITY AND FAST...

Steven S. Lumetta received A.B. in Physics in 1994
and M.S. and Ph.D. degrees in computer science from
University of California, Berkeley in 1994 and 1998.
He is an associate professor of electrical and computer
engineering, an affiliate associate professor of com-
puter science, and a research associate professor in the
Coordinated Science Laboratory at the University of
Illinois at Urbana-Champaign. Lumetta’s research in-
terests are in networking, computer systems, and dig-
ital system testing.

105

