• Title/Summary/Keyword: Random lens array

Search Result 2, Processing Time 0.014 seconds

Numerical Reconstruction of Two-dimensional Object from the Image Captured by a Random Lens Array (불규칙 렌즈 배열을 통과한 영상을 이용한 2차원 물체의 수치적 복원)

  • Hong, Sung-In;Kim, Nam;Park, Jae-Hyeung
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.3
    • /
    • pp.120-124
    • /
    • 2013
  • We propose a method to reconstruct the two-dimensional object from an image captured through an array of random lenses each of which has random shape, size, and focal power. In the proposed method, the characteristics of the random lens array are estimated by capturing images for known elementary inputs, and then the object is reconstructed by measuring correlations between the random lens images of the object and the elementary inputs. The experimental results show that the original object can be recognized by the proposed reconstruction method. Nevertheless, further quality enhancement is required to increase feasibility and to extend to general three-dimensional object cases.

Fabrication of Scattering Layer for Light Extraction Efficiency of OLEDs (RIE 공정을 이용한 유기발광다이오드의 광 산란층 제작)

  • Bae, Eun Jeong;Jang, Eun Bi;Choi, Geun Su;Seo, Ga Eun;Jang, Seung Mi;Park, Young Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.95-102
    • /
    • 2022
  • Since the organic light-emitting diodes (OLEDs) have been widely investigated as next-generation displays, it has been successfully commercialized as a flexible and rollable display. However, there is still wide room and demand to improve the device characteristics such as power efficiency and lifetime. To solve this issue, there has been a wide research effort, and among them, the internal and the external light extraction techniques have been attracted in this research field by its fascinating characteristic of material independence. In this study, a micro-nano composite structured external light extraction layer was demonstrated. A reactive ion etching (RIE) process was performed on the surfaces of hexagonally packed hemisphere micro-lens array (MLA) and randomly distributed sphere diffusing films to form micro-nano composite structures. Random nanostructures of different sizes were fabricated by controlling the processing time of the O2 / CHF3 plasma. The fabricated device using a micro-nano composite external light extraction layer showed 1.38X improved external quantum efficiency compared to the reference device. The results prove that the external light extraction efficiency is improved by applying the micro-nano composite structure on conventional MLA fabricated through a simple process.