• Title/Summary/Keyword: Random forest model

Search Result 574, Processing Time 0.027 seconds

Machine Learning-based Phishing Website Detection Model (머신러닝 기반 피싱 사이트 탐지 모델)

  • Sumin Oh;Minseo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.575-580
    • /
    • 2024
  • Detecting the status of websites, normal or phishing, is necessary to defend against intelligent phishing attacks. We propose a machine learning-based classification to predict the status of websites. First, we collect information about 'URL', convert it into numerical data, and remove outliers. Second, we apply VIF(Variance Inflation Factors) to understand the correlation and independence between variables. Finally, we develop a phishing website detection model with machine learning-based classifications, which predicts website status. In the test datasets, Random Forest showed the best performance, with precision of 93.74%, recall of 92.26%, and accuracy of 93.14%. In the future, we expect to apply our model to detect various phishing crimes.

Default Prediction of Automobile Credit Based on Support Vector Machine

  • Chen, Ying;Zhang, Ruirui
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.75-88
    • /
    • 2021
  • Automobile credit business has developed rapidly in recent years, and corresponding default phenomena occur frequently. Credit default will bring great losses to automobile financial institutions. Therefore, the successful prediction of automobile credit default is of great significance. Firstly, the missing values are deleted, then the random forest is used for feature selection, and then the sample data are randomly grouped. Finally, six prediction models of support vector machine (SVM), random forest and k-nearest neighbor (KNN), logistic, decision tree, and artificial neural network (ANN) are constructed. The results show that these six machine learning models can be used to predict the default of automobile credit. Among these six models, the accuracy of decision tree is 0.79, which is the highest, but the comprehensive performance of SVM is the best. And random grouping can improve the efficiency of model operation to a certain extent, especially SVM.

Analysis of the Feature Importance of Occupational Accidents Occurring at Construction Sites on the Severity of Lost Workdays (건설 현장에서 발생한 업무상 재해가 근로손실일수 심각도에 미치는 특징 중요도 분석)

  • Kang, Kyung-Su;Choi, Jae-Hyun;Ryu, Han-Guk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.2
    • /
    • pp.165-174
    • /
    • 2021
  • The construction industry causes the most accidents and fatalities among all industries. Although many efforts have been made to reduce safety accidents in construction, the study on the lost workdays that return to work place is insufficient. Therefore, this study proposes a model that classifies the lost workdays lost into moderate and severity, and derives the importance of variable and analyzes important factors through the trained random forest model. We analyze the learning process of the random forest which is a black box model, and extracted important variables that impact on the severity of the lost workdays through the extracted feature importance. The factors existing inside were analyzed through the extracted variables. The purpose of this study is to analyze the accident case data at the construction site through a random forest model and to review variables that have a high impact on the lost workdays. In the future, this sutdy can apply to improve construction safety management and reduce the accident of industrial accidents.

Feature selection and prediction modeling of drug responsiveness in Pharmacogenomics (약물유전체학에서 약물반응 예측모형과 변수선택 방법)

  • Kim, Kyuhwan;Kim, Wonkuk
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.153-166
    • /
    • 2021
  • A main goal of pharmacogenomics studies is to predict individual's drug responsiveness based on high dimensional genetic variables. Due to a large number of variables, feature selection is required in order to reduce the number of variables. The selected features are used to construct a predictive model using machine learning algorithms. In the present study, we applied several hybrid feature selection methods such as combinations of logistic regression, ReliefF, TurF, random forest, and LASSO to a next generation sequencing data set of 400 epilepsy patients. We then applied the selected features to machine learning methods including random forest, gradient boosting, and support vector machine as well as a stacking ensemble method. Our results showed that the stacking model with a hybrid feature selection of random forest and ReliefF performs better than with other combinations of approaches. Based on a 5-fold cross validation partition, the mean test accuracy value of the best model was 0.727 and the mean test AUC value of the best model was 0.761. It also appeared that the stacking models outperform than single machine learning predictive models when using the same selected features.

API Feature Based Ensemble Model for Malware Family Classification (악성코드 패밀리 분류를 위한 API 특징 기반 앙상블 모델 학습)

  • Lee, Hyunjong;Euh, Seongyul;Hwang, Doosung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.531-539
    • /
    • 2019
  • This paper proposes the training features for malware family analysis and analyzes the multi-classification performance of ensemble models. We construct training data by extracting API and DLL information from malware executables and use Random Forest and XGBoost algorithms which are based on decision tree. API, API-DLL, and DLL-CM features for malware detection and family classification are proposed by analyzing frequently used API and DLL information from malware and converting high-dimensional features to low-dimensional features. The proposed feature selection method provides the advantages of data dimension reduction and fast learning. In performance comparison, the malware detection rate is 93.0% for Random Forest, the accuracy of malware family dataset is 92.0% for XGBoost, and the false positive rate of malware family dataset including benign is about 3.5% for Random Forest and XGBoost.

Relationships between Fish Communities and Environmental Variables in Islands, South Korea

  • Kwon, Yong-Su;Shin, Man-Seok;Yoon, Hee-Nam
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.2
    • /
    • pp.84-96
    • /
    • 2022
  • Most of the islands of Korea are distributed in the South and West Sea, and it consists of independent small stream. As a result, the fish community that inhabits the island's stream is isolated from the mainland and other island. This study utilized a Self-Organizing Map (SOM) and a random forest model to analyze the relationship between environmental variables and fish communities inhabiting islands in South Korea. Through the SOM analysis, the fish communities were divided into three clusters, and there were differences in biotic and abiotic factors between these groups. Cluster I consisted of sites with relatively larger island areas and a higher number of species and population. It was found that 15 out of 16 indicator species were included. Meanwhile, the remaining clusters had fewer species and populations. Cluster II, especially, showed the lowest impact from physical variables such as water width and depth. As a result of predicting the species richness using the random forest model, physical variables in habitats, such as stream width and water depth, had a relatively higher importance on species richness. On the other hand, forest area was the most important variables for predicting Shannon diversity, followed by maximum water depth, and gravel. The results suggest that this study can be used as basic data for establishing a stream ecosystem management strategy in terms of conservation and protection of biological resources in streams of islands.

Deep Learning based Scrapbox Accumulated Status Measuring

  • Seo, Ye-In;Jeong, Eui-Han;Kim, Dong-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.27-32
    • /
    • 2020
  • In this paper, we propose an algorithm to measure the accumulated status of scrap boxes where metal scraps are accumulated. The accumulated status measuring is defined as a multi-class classification problem, and the method with deep learning classify the accumulated status using only the scrap box image. The learning was conducted by the Transfer Learning method, and the deep learning model was NASNet-A. In order to improve the accuracy of the model, we combined the Random Forest classifier with the trained NASNet-A and improved the model through post-processing. Testing with 4,195 data collected in the field showed 55% accuracy when only NASNet-A was applied, and the proposed method, NASNet with Random Forest, improved the accuracy by 88%.

A Predictive Model to identify possible affected Bipolar disorder students using Naive Baye's, Random Forest and SVM machine learning techniques of data mining and Building a Sequential Deep Learning Model using Keras

  • Peerbasha, S.;Surputheen, M. Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.267-274
    • /
    • 2021
  • Medical care practices include gathering a wide range of student data that are with manic episodes and depression which would assist the specialist with diagnosing a health condition of the students correctly. In this way, the instructors of the specific students will also identify those students and take care of them well. The data which we collected from the students could be straightforward indications seen by them. The artificial intelligence has been utilized with Naive Baye's classification, Random forest classification algorithm, SVM algorithm to characterize the datasets which we gathered to check whether the student is influenced by Bipolar illness or not. Performance analysis of the disease data for the algorithms used is calculated and compared. Also, a sequential deep learning model is builded using Keras. The consequences of the simulations show the efficacy of the grouping techniques on a dataset, just as the nature and complexity of the dataset utilized.

Application of Multi-Layer Perceptron and Random Forest Method for Cylinder Plate Forming (Multi-Layer Perceptron과 Random Forest를 이용한 실린더 판재의 성형 조건 예측)

  • Kim, Seong-Kyeom;Hwang, Se-Yun;Lee, Jang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.297-304
    • /
    • 2020
  • In this study, the prediction method was reviewed to process a cylindrical plate forming using machine learning as a data-driven approach by roll bending equipment. The calculation of the forming variables was based on the analysis using the mechanical relationship between the material properties and the roll bending machine in the bending process. Then, by applying the finite element analysis method, the accuracy of the deformation prediction model was reviewed, and a large number data set was created to apply to machine learning using the finite element analysis model for deformation prediction. As a result of the application of the machine learning model, it was confirmed that the calculation is slightly higher than the linear regression method. Applicable results were confirmed through the machine learning method.

The road roughness based Braking Pressure Calculation System(BPCS) for an Autonomous Vehicle Stability (자율차량 안정성을 위한 도로 거칠기 기반 제동압력 계산 시스템)

  • Son, Su-Rak;Lee, Byung-Kwan;Sim, Son-Kweon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.323-330
    • /
    • 2020
  • This paper proposes the road roughness based Braking Pressure Calculation System(BPCS) for an Autonomous Vehicle Stability. The system consists of an image normalization module that processes the front image of a vehicle to fit the input of the random forest, a Random Forest based Road Roughness Classification Module that distinguish the roughness of the road on which the vehicle is travelling by using the weather information and the front image of a vehicle as an input, and a brake pressure control module that modifies a friction coefficient applied to the vehicle according to the road roughness and determines the braking strength to maintain optimal driving according to a vehicle ahead. To verify the efficiency of the BPCS experiment was conducted with a random forest model. The result of the experiment shows that the accuracy of the random forest model was about 2% higher than that of the SVM, and that 7 features should be bagged to make an accurate random forest model. Therefore, the BPCS satisfies both real-time and accuracy in situations where the vehicle needs to brake.