• Title/Summary/Keyword: Random forest algorithm

Search Result 216, Processing Time 0.024 seconds

A Clustering Approach for Feature Selection in Microarray Data Classification Using Random Forest

  • Aydadenta, Husna;Adiwijaya, Adiwijaya
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1167-1175
    • /
    • 2018
  • Microarray data plays an essential role in diagnosing and detecting cancer. Microarray analysis allows the examination of levels of gene expression in specific cell samples, where thousands of genes can be analyzed simultaneously. However, microarray data have very little sample data and high data dimensionality. Therefore, to classify microarray data, a dimensional reduction process is required. Dimensional reduction can eliminate redundancy of data; thus, features used in classification are features that only have a high correlation with their class. There are two types of dimensional reduction, namely feature selection and feature extraction. In this paper, we used k-means algorithm as the clustering approach for feature selection. The proposed approach can be used to categorize features that have the same characteristics in one cluster, so that redundancy in microarray data is removed. The result of clustering is ranked using the Relief algorithm such that the best scoring element for each cluster is obtained. All best elements of each cluster are selected and used as features in the classification process. Next, the Random Forest algorithm is used. Based on the simulation, the accuracy of the proposed approach for each dataset, namely Colon, Lung Cancer, and Prostate Tumor, achieved 85.87%, 98.9%, and 89% accuracy, respectively. The accuracy of the proposed approach is therefore higher than the approach using Random Forest without clustering.

Comparison of CT Exposure Dose Prediction Models Using Machine Learning-based Body Measurement Information (머신러닝 기반 신체 계측정보를 이용한 CT 피폭선량 예측모델 비교)

  • Hong, Dong-Hee
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.503-509
    • /
    • 2020
  • This study aims to develop a patient-specific radiation exposure dose prediction model based on anthropometric data that can be easily measurable during CT examination, and to be used as basic data for DRL setting and radiation dose management system in the future. In addition, among the machine learning algorithms, the most suitable model for predicting exposure doses is presented. The data used in this study were chest CT scan data, and a data set was constructed based on the data including the patient's anthropometric data. In the pre-processing and sample selection of the data, out of the total number of samples of 250 samples, only chest CT scans were performed without using a contrast agent, and 110 samples including height and weight variables were extracted. Of the 110 samples extracted, 66% was used as a training set, and the remaining 44% were used as a test set for verification. The exposure dose was predicted through random forest, linear regression analysis, and SVM algorithm using Orange version 3.26.0, an open software as a machine learning algorithm. Results Algorithm model prediction accuracy was R^2 0.840 for random forest, R^2 0.969 for linear regression analysis, and R^2 0.189 for SVM. As a result of verifying the prediction rate of the algorithm model, the random forest is the highest with R^2 0.986 of the random forest, R^2 0.973 of the linear regression analysis, and R^2 of 0.204 of the SVM, indicating that the model has the best predictive power.

Fast Random-Forest-Based Human Pose Estimation Using a Multi-scale and Cascade Approach

  • Chang, Ju Yong;Nam, Seung Woo
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.949-959
    • /
    • 2013
  • Since the recent launch of Microsoft Xbox Kinect, research on 3D human pose estimation has attracted a lot of attention in the computer vision community. Kinect shows impressive estimation accuracy and real-time performance on massive graphics processing unit hardware. In this paper, we focus on further reducing the computation complexity of the existing state-of-the-art method to make the real-time 3D human pose estimation functionality applicable to devices with lower computing power. As a result, we propose two simple approaches to speed up the random-forest-based human pose estimation method. In the original algorithm, the random forest classifier is applied to all pixels of the segmented human depth image. We first use a multi-scale approach to reduce the number of such calculations. Second, the complexity of the random forest classification itself is decreased by the proposed cascade approach. Experiment results for real data show that our method is effective and works in real time (30 fps) without any parallelization efforts.

A random forest-regression-based inverse-modeling evolutionary algorithm using uniform reference points

  • Gholamnezhad, Pezhman;Broumandnia, Ali;Seydi, Vahid
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.805-815
    • /
    • 2022
  • The model-based evolutionary algorithms are divided into three groups: estimation of distribution algorithms, inverse modeling, and surrogate modeling. Existing inverse modeling is mainly applied to solve multi-objective optimization problems and is not suitable for many-objective optimization problems. Some inversed-model techniques, such as the inversed-model of multi-objective evolutionary algorithm, constructed from the Pareto front (PF) to the Pareto solution on nondominated solutions using a random grouping method and Gaussian process, were introduced. However, some of the most efficient inverse models might be eliminated during this procedure. Also, there are challenges, such as the presence of many local PFs and developing poor solutions when the population has no evident regularity. This paper proposes inverse modeling using random forest regression and uniform reference points that map all nondominated solutions from the objective space to the decision space to solve many-objective optimization problems. The proposed algorithm is evaluated using the benchmark test suite for evolutionary algorithms. The results show an improvement in diversity and convergence performance (quality indicators).

Research on the modified algorithm for improving accuracy of Random Forest classifier which identifies automatically arrhythmia (부정맥 증상을 자동으로 판별하는 Random Forest 분류기의 정확도 향상을 위한 수정 알고리즘에 대한 연구)

  • Lee, Hyun-Ju;Shin, Dong-Kyoo;Park, Hee-Won;Kim, Soo-Han;Shin, Dong-Il
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.341-348
    • /
    • 2011
  • ECG(Electrocardiogram), a field of Bio-signal, is generally experimented with classification algorithms most of which are SVM(Support Vector Machine), MLP(Multilayer Perceptron). But this study modified the Random Forest Algorithm along the basis of signal characteristics and comparatively analyzed the accuracies of modified algorithm with those of SVM and MLP to prove the ability of modified algorithm. The R-R interval extracted from ECG is used in this study and the results of established researches which experimented co-equal data are also comparatively analyzed. As a result, modified RF Classifier showed better consequences than SVM classifier, MLP classifier and other researches' results in accuracy category. The Band-pass filter is used to extract R-R interval in pre-processing stage. However, the Wavelet transform, median filter, and finite impulse response filter in addition to Band-pass filter are often used in experiment of ECG. After this study, selection of the filters efficiently deleting the baseline wandering in pre-processing stage and study of the methods correctly extracting the R-R interval are needed.

A Study on a Stress Measurement Algorithm Based on ECG Analysis of NUI-applied Tangible Game Users (NUI가 적용된 체감형 게임의 사용자 심전도 분석에 의한 스트레스 측정 알고리즘 연구)

  • Lee, Hyun-Ju;Shin, Dong-Il;Shin, Dong-Kyoo
    • Journal of Korea Game Society
    • /
    • v.13 no.5
    • /
    • pp.73-80
    • /
    • 2013
  • NUI(Natural User Interface) allows users to directly interact with surrounding digital devices using their voices or body motions without additional input/output interface devices. Our study has been carried out on human users who play a tangible game with body motions in the NUI-applied smart space. ECG was measured for 60 seconds duration before and after playing the game to determine user stress levels, and the measured signals were analyzed through an improved Random Forest algorithm. In order to experiment by a supervised learning, users additionally input whether or not the user felt stress. Moreover, the improved algorithm showed 1.04% higher accuracy than existing algorithm.

An Automatic Algorithm for Vessel Segmentation in X-Ray Angiogram using Random Forest (랜덤 포레스트를 이용한 X-선 혈관조영영상에서의 혈관 자동 영역화 알고리즘)

  • Jung, Sunghee;Lee, Soochahn;Shim, Hackjoon;Jung, Ho Yub;Heo, Yong Seok;Chang, Hyuk-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.79-85
    • /
    • 2015
  • The purpose of this study is to develop an automatic algorithm for vessel segmentation in X-Ray angiogram using Random Forest (RF). The proposed algorithm is composed of the following steps: First, the multiscale hessian-based filtering is performed in order to enhance the vessel structure. Second, eigenvalues and eigenvectors of hessian matrix are used to learn the RF classifier as feature vectors. Finally, we can get the result through the trained RF. We evaluated the similarity between the result of proposed algorithm and the manual segmentation using 349 frames, and compared with the results of the following two methods: Frangi et al. and Krissian et al. According to the experimental results, the proposed algorithm showed high similarity compared to other two methods.

A study on applying random forest and gradient boosting algorithm for Chl-a prediction of Daecheong lake (대청호 Chl-a 예측을 위한 random forest와 gradient boosting 알고리즘 적용 연구)

  • Lee, Sang-Min;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.507-516
    • /
    • 2021
  • In this study, the machine learning which has been widely used in prediction algorithms recently was used. the research point was the CD(chudong) point which was a representative point of Daecheong Lake. Chlorophyll-a(Chl-a) concentration was used as a target variable for algae prediction. to predict the Chl-a concentration, a data set of water quality and quantity factors was consisted. we performed algorithms about random forest and gradient boosting with Python. to perform the algorithms, at first the correlation analysis between Chl-a and water quality and quantity data was studied. we extracted ten factors of high importance for water quality and quantity data. as a result of the algorithm performance index, the gradient boosting showed that RMSE was 2.72 mg/m3 and MSE was 7.40 mg/m3 and R2 was 0.66. as a result of the residual analysis, the analysis result of gradient boosting was excellent. as a result of the algorithm execution, the gradient boosting algorithm was excellent. the gradient boosting algorithm was also excellent with 2.44 mg/m3 of RMSE in the machine learning hyperparameter adjustment result.

A Random Forest Algorithm-based Accident Prediction to Prevent Marine Pilot Occupational Accidents

  • Gokhan Camliyurt;Won Sik Kang;Daewon Kim;Sangwon Park;Youngsoo Park
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.415-416
    • /
    • 2022
  • Marine pilot occupational accidents during transfer to/from the ship are at the top of the agenda after several safety campaigns by IMPA and individual attemptsThere is multiple transfer method for the marine pilot, but a most common way is to use the pilot cutter. This paper aims to predict marine pilot occupational accidents before it occurs by using historical data. Since the problem depends on several variables, this paper develops a model by using the random forest method to predict marine pilot accidents before happening with the random forest method by using RStudio software

  • PDF

Comparison of Handball Result Predictions Using Bagging and Boosting Algorithms (배깅과 부스팅 알고리즘을 이용한 핸드볼 결과 예측 비교)

  • Kim, Ji-eung;Park, Jong-chul;Kim, Tae-gyu;Lee, Hee-hwa;Ahn, Jee-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.279-286
    • /
    • 2021
  • The purpose of this study is to compare the predictive power of the Bagging and Boosting algorithm of ensemble method based on the motion information that occurs in woman handball matches and to analyze the availability of motion information. To this end, this study analyzed the predictive power of the result of 15 practice matches based on inertial motion by analyzing the predictive power of Random Forest and Adaboost algorithms. The results of the study are as follows. First, the prediction rate of the Random Forest algorithm was 66.9 ± 0.1%, and the prediction rate of the Adaboost algorithm was 65.6 ± 1.6%. Second, Random Forest predicted all of the winning results, but none of the losing results. On the other hand, the Adaboost algorithm shows 91.4% prediction of winning and 10.4% prediction of losing. Third, in the verification of the suitability of the algorithm, the Random Forest had no overfitting error, but Adaboost showed an overfitting error. Based on the results of this study, the availability of motion information is high when predicting sports events, and it was confirmed that the Random Forest algorithm was superior to the Adaboost algorithm.