• 제목/요약/키워드: Random coefficient autoregressive model

검색결과 13건 처리시간 0.021초

Recent Review of Nonlinear Conditional Mean and Variance Modeling in Time Series

  • Hwang, S.Y.;Lee, J.A.
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권4호
    • /
    • pp.783-791
    • /
    • 2004
  • In this paper we review recent developments in nonlinear time series modeling on both conditional mean and conditional variance. Traditional linear model in conditional mean is referred to as ARMA(autoregressive moving average) process investigated by Box and Jenkins(1976). Nonlinear mean models such as threshold, exponential and random coefficient models are reviewed and their characteristics are explained. In terms of conditional variances, ARCH(autoregressive conditional heteroscedasticity) class is considered as typical linear models. As nonlinear variants of ARCH, diverse nonlinear models appearing in recent literature including threshold ARCH, beta-ARCH and Box-Cox ARCH models are remarked. Also, a class of unified nonlinear models are considered and parameter estimation for that class is briefly discussed.

  • PDF

신경망을 이용한 비선형 시계열 자료의 예측 (Prediction for Nonlinear Time Series Data using Neural Network)

  • 김인규
    • 디지털융복합연구
    • /
    • 제10권9호
    • /
    • pp.357-362
    • /
    • 2012
  • 본 논문에서는 분산이 각각 다른 이분산성을 갖는 비선형 시계열 자료를 가지고, 비선형 시계열 모형중 1차 일반화 확률계수 자기회귀모형(GRCA(1))과 자료의 형태에 상관없이 적용할 수 있는 신경망 모형을 이용하여 예측을 해서 어느 모형이 최소 평균예측오차제곱의 기준에서 비선형 시계열 자료의 예측에 적합한지를 비교 분석 하는 것이다. 조건부 이분산 모형에 따르는 자료로 확인된 종합주가지수 변동율에 대한 사례 분석 결과를 보면 신경망 모형은 단기 예측에서 좋은 예측 결과를 보였고, 비선형 모형인 GRCA(1) 모형은 장기 예측에서 좋은 예측 결과를 보여 주었다.

건설투자(建設投資)의 단기예측모형(短期豫測模型) 비교(比較) (Short-term Construction Investment Forecasting Model in Korea)

  • 김관영;이창수
    • KDI Journal of Economic Policy
    • /
    • 제14권1호
    • /
    • pp.121-145
    • /
    • 1992
  • 본고(本稿)에서는 현재의 경제상황을 잘 반영하는 건설투자활동(建設投資活動)의 단기예측모형(短期豫測模型)을 정립하고자 먼저 관련 시계열자료의 안정성(安定性) 여부(與否)와 순환성(循環性), 계절성(季節性)의 특성을 살펴본 후 여러 단기모형의 예측력(豫測力), 정합성(整合性), 설명력(說明力)을 비교 검토했다. 단위근(單位根) 검정(檢定)과 자기상관계수(自己相關係數) 스펙트랄 밀도함수 분석의 결과, 건설관련 시계열자료들이 대체로 단위근(單位根)을 갖지 않음으로써 안정적이고 주기적인 순환변동을 하고 있으며, 시차변수의 설명력이 높은 특성을 나타내었다. 또한 건설투자자료의 특성이 선행지표(先行指標)인 건축허가연면적(建築許可延面積) 및 건설수주액(建設受注額)과 아주 유사하여 건설투자 단기예측에 있어서 두 지표 사이의 시차관계(時差關係) 파악이 중요함을 알 수 있었다. 제(第)III장(章)에서는 단변량(單變量) 시계열모형(時系列模型)으로 ARIMA모형(模型)과 승법선형추세예측모형(乘法線型趨勢豫測模型)을, 다변량(多變量) 시계열모형(時系列模型)으로는 첫째, 선행지표(先行指標)를 이용한 1차자기회귀모형(次自己回歸模型), VAR모형(模型), 둘째 GNP자료를 이용한 거시경제모형의 단순한 축약형모형(縮約型模型)과 VAR모형(模型)을 제시하고 이들을 비교 평가하였다. 이에 따르면 단변량 시계열모형보다는 다변량 시계열모형이 시간이 경과할수록 예측오차(豫測誤差)가 커지지 않는다는 점에서 우수한 것으로 나타났으며, 다변량모형 중에서도 벡터자기회귀모형이 여타 모형보다 절대예측오차평균(絶對豫測誤差平均), 평균자승근(平均自乘根) 퍼센트 오차(誤差), 결정계수(決定係數) 등 모든 면에서 우수한 것으로 평가되었다. 이는 최근 건설투자가 추세에서 벗어난 급증세를 지속하고 있음을 고려할 때 타당한 결론이라 생각된다.

  • PDF