The Journal of the Korea institute of electronic communication sciences
/
v.18
no.6
/
pp.1269-1276
/
2023
Crop estimation is essential for the multinational meal and powerful demand due to its numerous aspects like soil, rain, climate, atmosphere, and their relations. The consequence of climate shift impacts the farming yield products. We operate the dataset with temperature, rainfall, humidity, etc. The current research focuses on feature selection with multifarious classifiers to assist farmers and agriculturalists. The crop yield estimation utilizing the feature selection approach is 96% accuracy. Feature selection affects a machine learning model's performance. Additionally, the performance of the current graph classifier accepts 81.5%. Eventually, the random forest regressor without feature selections owns 78% accuracy and the decision tree regressor without feature selections retains 67% accuracy. Our research merit is to reveal the experimental results of with and without feature selection significance for the proposed ten algorithms. These findings support learners and students in choosing the appropriate models for crop classification studies.
Journal of the Korean Data and Information Science Society
/
v.23
no.2
/
pp.375-383
/
2012
The purpose of the ensemble methods is to increase the accuracy of prediction through combining many classifiers. According to recent studies, it is proved that random forests and forward stagewise regression have good accuracies in classification problems. However they have great prediction error in separation boundary points because they used decision tree as a base learner. In this study, we use the kernel ridge regression instead of the decision trees in random forests and boosting. The usefulness of our proposed ensemble methods was shown by the simulation results of the prostate cancer and the Boston housing data.
본 논문에서는 의료영상 중 X-ray 영상을 대상으로 영상을 분류하고 분류 결과에 따라 다중 키워드를 생성하는 방법을 제시한다. X-ray영상은 대부분 그레이 영상임으로 Local Binary Patterns (LBP)을 이용하여 픽셀간의 연관성을 특징으로 추출하고, 실시간 학습 및 분류가 가능한 Random Forests 분류기로 영상들을 30개의 클래스로 분류한다. 또한, 미리 정의된 신체 부위간의 관계 가중치를 분류 스코어에 결합하여 신뢰값을 생성하고 이를 기반으로 영상에 대해 다중 주석을 부여하게 된다. 이렇게 부여된 다중 주석은 키워드 기반의 의료영상을 가능케 함으로 보다 쉽고 효율적인 검색 환경을 제공할 수 있다.
Compared to the imagery produced by traditional satellites, PlanetScope satellite imagery has made it possible to easily capture remotely-sensed imagery every day through dozens or even hundreds of satellites on a relatively small budget. This study aimed to detect changed areas and update a land cover map using a PlanetScope image. To generate a classification map, pixel-based Random Forest (RF) classification was performed by using additional features, such as the Normalized Difference Water Index (NDWI) and the Normalized Difference Vegetation Index (NDVI). The classification result was converted to vector data and compared with the existing land cover map to estimate the changed area. To estimate the accuracy and trends of the changed area, the quantitative quality of the supervised classification result using the PlanetScope image was evaluated first. In addition, the patterns of the changed area that corresponded to the classification result were analyzed using the PlanetScope satellite image. Experimental results found that the PlanetScope image can be used to effectively to detect changed areas on large-scale land cover maps, and supervised classification results can update the changed areas.
The purpose of this study was to propose a model which is suitable for the actual delivery system by designing a fetal delivery hospital operation management and fetal health classification model. The number of deaths during childbirth is similar to the number of maternal mortality rate of 295,000 as of 2017. Among those numbers, 94% of deaths are preventable in most cases. Therefore, in this paper, we proposed a model that predicts the health condition of the fetus using data like heart rate of fetuses, fetal movements, uterine contractions, etc. that are extracted from the Cardiotocograms(CTG) test using a random forest. If the redundancy of the data is unbalanced, This proposed model guarantees a stable management of the fetal delivery health management system. To secure the accuracy of the fetal delivery health management system, we remove the outlier which embedded in the system, by setting thresholds for the upper and lower standard deviations. In addition, as the proportion of the sequence class uses the health status of fetus, a small number of classes were replicated by data-resampling to balance the classes. We had the 4~5% improvement and as the result we reached the accuracy of 97.75%. It is expected that the developed model will contribute to prevent death and effective fetal health management, also disease prevention by predicting and managing the fetus'deaths and diseases accurately in advance.
We performed a magnetotelluric (MT) survey to delineate the geological structures below the depth of 20 km in the Gyeongju area where an earthquake with a magnitude of 5.8 occurred in September 2016. The measured MT data were severely distorted by electrical noise caused by subways, power lines, factories, houses, and farmlands, and by vehicle noise from passing trains and large trucks. Using machine-learning methods, we classified the MT time series data obtained near the railway and highway into two groups according to the inclusion of traffic noise. We applied three schemes, stochastic gradient descent, support vector machine, and random forest, to the time series data for the highspeed train noise. We formulated three datasets, Hx, Hy, and Hx & Hy, for the time series data of the large truck noise and applied the random forest method to each dataset. To evaluate the effect of removing the traffic noise, we compared the time series data, amplitude spectra, and apparent resistivity curves before and after removing the traffic noise from the time series data. We also examined the frequency range affected by traffic noise and whether artifact noise occurred during the traffic noise removal process as a result of the residual difference.
Journal of the Korea Society of Computer and Information
/
v.27
no.12
/
pp.29-40
/
2022
In this paper, we studied a system that detects and analyzes the pathological features of diabetic retinopathy using Mask R-CNN and a Random Forest classifier. Those are one of the deep learning techniques and automatically diagnoses diabetic retinopathy. Diabetic retinopathy can be diagnosed through fundus images taken with special equipment. Brightness, color tone, and contrast may vary depending on the device. Research and development of an automatic diagnosis system using artificial intelligence to help ophthalmologists make medical judgments possible. This system detects pathological features such as microvascular perfusion and retinal hemorrhage using the Mask R-CNN technique. It also diagnoses normal and abnormal conditions of the eye by using a Random Forest classifier after pre-processing. In order to improve the detection performance of the Mask R-CNN algorithm, image augmentation was performed and learning procedure was conducted. Dice similarity coefficients and mean accuracy were used as evaluation indicators to measure detection accuracy. The Faster R-CNN method was used as a control group, and the detection performance of the Mask R-CNN method through this study showed an average of 90% accuracy through Dice coefficients. In the case of mean accuracy it showed 91% accuracy. When diabetic retinopathy was diagnosed by learning a Random Forest classifier based on the detected pathological symptoms, the accuracy was 99%.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.9
/
pp.2904-2926
/
2022
Currently, diabetes is the most common chronic disease in the world, affecting 23.7% of the population in the Kingdom of Saudi Arabia. Diabetes may be the cause of lower-limb amputations, kidney failure and blindness among adults. Therefore, diagnosing the disease in its early stages is essential in order to save human lives. With the revolution in technology, Artificial Intelligence (AI) could play a central role in the early prediction of diabetes by employing Machine Learning (ML) technology. In this paper, we developed a diagnosis system using machine learning models for the detection of type 2 diabetes among adults, through the adoption of two different diabetes datasets: one for training and the other for the testing, to analyze and enhance the prediction accuracy. This work offers an enhanced classification accuracy as a result of employing several pre-processing methods before applying the ML models. According to the obtained results, the implemented Random Forest (RF) classifier offers the best classification accuracy with a classification score of 98.95%.
In this study, we aim to use big data resources and statistical analysis to obtain a reliable instruction to reach high-quality and high yield agricultural yields. In this regard, soil type data, raining and temperature data as well as wheat production in each year are collected for a specific region. Using statistical methodology, the acquired data was cleaned to remove incomplete and defective data. Afterwards, using several classification methods in machine learning we tried to distinguish between different factors and their influence on the final crop yields. Comparing the proposed models' prediction using statistical quantities correlation factor and mean squared error between predicted values of the crop yield and actual values the efficacy of machine learning methods is discussed. The results of the analysis show high accuracy of machine learning methods in the prediction of the crop yields. Moreover, it is indicated that the random forest (RF) classification approach provides best results among other classification methods utilized in this study.
International Journal of Computer Science & Network Security
/
v.23
no.12
/
pp.91-100
/
2023
As SDN devices and systems hit the market, security in SDN must be raised on the agenda. SDN has become an interesting area in both academics and industry. SDN promises many benefits which attract many IT managers and Leading IT companies which motivates them to switch to SDN. Over the last three decades, network attacks becoming more sophisticated and complex to detect. The goal is to study how traffic information can be extracted from an SDN controller and open virtual switches (OVS) using SDN mechanisms. The testbed environment is created using the RYU controller and Mininet. The extracted information is further used to detect these attacks efficiently using a machine learning approach. To use the Machine learning approach, a dataset is required. Currently, a public SDN based dataset is not available. In this paper, SDN based dataset is created which include legitimate and non-legitimate traffic. Classification is divided into two categories: binary and multiclass classification. Traffic has been classified with or without dimension reduction techniques like PCA and LDA. Our approach provides 98.58% of accuracy using a random forest algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.