• Title/Summary/Keyword: Random Forest Algorithm

Search Result 231, Processing Time 0.021 seconds

Selecting Machine Learning Model Based on Natural Language Processing for Shanghanlun Diagnostic System Classification (자연어 처리 기반 『상한론(傷寒論)』 변병진단체계(辨病診斷體系) 분류를 위한 기계학습 모델 선정)

  • Young-Nam Kim
    • 대한상한금궤의학회지
    • /
    • v.14 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • Objective : The purpose of this study is to explore the most suitable machine learning model algorithm for Shanghanlun diagnostic system classification using natural language processing (NLP). Methods : A total of 201 data items were collected from 『Shanghanlun』 and 『Clinical Shanghanlun』, 'Taeyangbyeong-gyeolhyung' and 'Eumyangyeokchahunobokbyeong' were excluded to prevent oversampling or undersampling. Data were pretreated using a twitter Korean tokenizer and trained by logistic regression, ridge regression, lasso regression, naive bayes classifier, decision tree, and random forest algorithms. The accuracy of the models were compared. Results : As a result of machine learning, ridge regression and naive Bayes classifier showed an accuracy of 0.843, logistic regression and random forest showed an accuracy of 0.804, and decision tree showed an accuracy of 0.745, while lasso regression showed an accuracy of 0.608. Conclusions : Ridge regression and naive Bayes classifier are suitable NLP machine learning models for the Shanghanlun diagnostic system classification.

  • PDF

Comparing the Performance of 17 Machine Learning Models in Predicting Human Population Growth of Countries

  • Otoom, Mohammad Mahmood
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.220-225
    • /
    • 2021
  • Human population growth rate is an important parameter for real-world planning. Common approaches rely upon fixed parameters like human population, mortality rate, fertility rate, which is collected historically to determine the region's population growth rate. Literature does not provide a solution for areas with no historical knowledge. In such areas, machine learning can solve the problem, but a multitude of machine learning algorithm makes it difficult to determine the best approach. Further, the missing feature is a common real-world problem. Thus, it is essential to compare and select the machine learning techniques which provide the best and most robust in the presence of missing features. This study compares 17 machine learning techniques (base learners and ensemble learners) performance in predicting the human population growth rate of the country. Among the 17 machine learning techniques, random forest outperformed all the other techniques both in predictive performance and robustness towards missing features. Thus, the study successfully demonstrates and compares machine learning techniques to predict the human population growth rate in settings where historical data and feature information is not available. Further, the study provides the best machine learning algorithm for performing population growth rate prediction.

Improvement of RocksDB Performance via Large-Scale Parameter Analysis and Optimization

  • Jin, Huijun;Choi, Won Gi;Choi, Jonghwan;Sung, Hanseung;Park, Sanghyun
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.374-388
    • /
    • 2022
  • Database systems usually have many parameters that must be configured by database administrators and users. RocksDB achieves fast data writing performance using a log-structured merged tree. This database has many parameters associated with write and space amplifications. Write amplification degrades the database performance, and space amplification leads to an increased storage space owing to the storage of unwanted data. Previously, it was proven that significant performance improvements can be achieved by tuning the database parameters. However, tuning the multiple parameters of a database is a laborious task owing to the large number of potential configuration combinations. To address this problem, we selected the important parameters that affect the performance of RocksDB using random forest. We then analyzed the effects of the selected parameters on write and space amplifications using analysis of variance. We used a genetic algorithm to obtain optimized values of the major parameters. The experimental results indicate an insignificant reduction (-5.64%) in the execution time when using these optimized values; however, write amplification, space amplification, and data processing rates improved considerably by 20.65%, 54.50%, and 89.68%, respectively, as compared to the performance when using the default settings.

Prediction of Net Irrigation Water Requirement in paddy field Based on Machine Learning (머신러닝 기법을 활용한 논 순용수량 예측)

  • Kim, Soo-Jin;Bae, Seung-Jong;Jang, Min-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.4
    • /
    • pp.105-117
    • /
    • 2022
  • This study tested SVM(support vector machine), RF(random forest), and ANN(artificial neural network) machine-learning models that can predict net irrigation water requirements in paddy fields. For the Jeonju and Jeongeup meteorological stations, the net irrigation water requirement was calculated using K-HAS from 1981 to 2021 and set as the label. For each algorithm, twelve models were constructed based on cumulative precipitation, precipitation, crop evapotranspiration, and month. Compared to the CE model, the R2 of the CEP model was higher, and MAE, RMSE, and MSE were lower. Comprehensively considering learning performance and learning time, it is judged that the RF algorithm has the best usability and predictive power of five-days is better than three-days. The results of this study are expected to provide the scientific information necessary for the decision-making of on-site water managers is expected to be possible through the connection with weather forecast data. In the future, if the actual amount of irrigation and supply are measured, it is necessary to develop a learning model that reflects this.

Developing Degenerative Arthritis Patient Classification Algorithm based on 3D Walking Video (3차원 보행 영상 기반 퇴행성 관절염 환자 분류 알고리즘 개발)

  • Tea-Ho Kang;Si-Yul Sung;Sang-Hyeok Han;Dong-Hyun Park;Sungwoo Kang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.161-169
    • /
    • 2023
  • Degenerative arthritis is a common joint disease that affects many elderly people and is typically diagnosed through radiography. However, the need for remote diagnosis is increasing because knee pain and walking disorders caused by degenerative arthritis make face-to-face treatment difficult. This study collects three-dimensional joint coordinates in real time using Azure Kinect DK and calculates 6 gait features through visualization and one-way ANOVA verification. The random forest classifier, trained with these characteristics, classified degenerative arthritis with an accuracy of 97.52%, and the model's basis for classification was identified through classification algorithm by features. Overall, this study not only compensated for the shortcomings of existing diagnostic methods, but also constructed a high-accuracy prediction model using statistically verified gait features and provided detailed prediction results.

Predicting the Subsequent Childbirth Intention of Married Women with One Child to Solve the Low Birth Rate Problem in Korea: Application of a Machine Learning Method (저출생 문제해결을 위한 한자녀 기혼여성의 후속 출산의향 예측: 머신러닝 방법의 적용)

  • Hyo Jeong Jeon
    • Korean Journal of Childcare and Education
    • /
    • v.20 no.2
    • /
    • pp.127-143
    • /
    • 2024
  • Objective: The purpose of this study is to develop a machine learning model to predict the subsequent childbirth intention of married women with one child, aiming to address the low birth rate problem in Korea, This will be achieved by utilizing data from the 2021 Family and Childbirth Survey conducted by the Korea Institute for Health and Social Affairs. Methods: A prediction model was developed using the Random Forest algorithm to predict the subsequent childbirth intention of married women with one child. This algorithm was chosen for its advantages in prediction and generalization, and its performance was evaluated. Results: The significance of variables influencing the Random Forest prediction model was confirmed. With the exception of the presence or absence of leave before and after childbirth, most variables contributed to predicting the intention to have subsequent childbirth. Notably, variables such as the mother's age, number of children planned at the time of marriage, average monthly household income, spouse's share of childcare burden, mother's weekday housework hours, and presence or absence of spouse's maternity leave emerged as relatively important predictors of subsequent childbirth intention.

A Study on Chaff Echo Detection using AdaBoost Algorithm and Radar Data (AdaBoost 알고리즘과 레이더 데이터를 이용한 채프에코 식별에 관한 연구)

  • Lee, Hansoo;Kim, Jonggeun;Yu, Jungwon;Jeong, Yeongsang;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.545-550
    • /
    • 2013
  • In pattern recognition field, data classification is an essential process for extracting meaningful information from data. Adaptive boosting algorithm, known as AdaBoost algorithm, is a kind of improved boosting algorithm for applying to real data analysis. It consists of weak classifiers, such as random guessing or random forest, which performance is slightly more than 50% and weights for combining the classifiers. And a strong classifier is created with the weak classifiers and the weights. In this paper, a research is performed using AdaBoost algorithm for detecting chaff echo which has similar characteristics to precipitation echo and interrupts weather forecasting. The entire process for implementing chaff echo classifier starts spatial and temporal clustering based on similarity with weather radar data. With them, learning data set is prepared that separated chaff echo and non-chaff echo, and the AdaBoost classifier is generated as a result. For verifying the classifier, actual chaff echo appearance case is applied, and it is confirmed that the classifier can distinguish chaff echo efficiently.

A research on the emotion classification and precision improvement of EEG(Electroencephalogram) data using machine learning algorithm (기계학습 알고리즘에 기반한 뇌파 데이터의 감정분류 및 정확도 향상에 관한 연구)

  • Lee, Hyunju;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.27-36
    • /
    • 2019
  • In this study, experiments on the improvement of the emotion classification, analysis and accuracy of EEG data were proceeded, which applied DEAP (a Database for Emotion Analysis using Physiological signals) dataset. In the experiment, total 32 of EEG channel data measured from 32 of subjects were applied. In pre-processing step, 256Hz sampling tasks of the EEG data were conducted, each wave range of the frequency (Hz); Theta, Slow-alpha, Alpha, Beta and Gamma were then extracted by using Finite Impulse Response Filter. After the extracted data were classified through Time-frequency transform, the data were purified through Independent Component Analysis to delete artifacts. The purified data were converted into CSV file format in order to conduct experiments of Machine learning algorithm and Arousal-Valence plane was used in the criteria of the emotion classification. The emotions were categorized into three-sections; 'Positive', 'Negative' and 'Neutral' meaning the tranquil (neutral) emotional condition. Data of 'Neutral' condition were classified by using Cz(Central zero) channel configured as Reference channel. To enhance the accuracy ratio, the experiment was performed by applying the attributes selected by ASC(Attribute Selected Classifier). In "Arousal" sector, the accuracy of this study's experiments was higher at "32.48%" than Koelstra's results. And the result of ASC showed higher accuracy at "8.13%" compare to the Liu's results in "Valence". In the experiment of Random Forest Classifier adapting ASC to improve accuracy, the higher accuracy rate at "2.68%" was confirmed than Total mean as the criterion compare to the existing researches.

Automatic scoring of mathematics descriptive assessment using random forest algorithm (랜덤 포레스트 알고리즘을 활용한 수학 서술형 자동 채점)

  • Inyong Choi;Hwa Kyung Kim;In Woo Chung;Min Ho Song
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.165-186
    • /
    • 2024
  • Despite the growing attention on artificial intelligence-based automated scoring technology as a support method for the introduction of descriptive items in school environments and large-scale assessments, there is a noticeable lack of foundational research in mathematics compared to other subjects. This study developed an automated scoring model for two descriptive items in first-year middle school mathematics using the Random Forest algorithm, evaluated its performance, and explored ways to enhance this performance. The accuracy of the final models for the two items was found to be between 0.95 to 1.00 and 0.73 to 0.89, respectively, which is relatively high compared to automated scoring models in other subjects. We discovered that the strategic selection of the number of evaluation categories, taking into account the amount of data, is crucial for the effective development and performance of automated scoring models. Additionally, text preprocessing by mathematics education experts proved effective in improving both the performance and interpretability of the automated scoring model. Selecting a vectorization method that matches the characteristics of the items and data was identified as one way to enhance model performance. Furthermore, we confirmed that oversampling is a useful method to supplement performance in situations where practical limitations hinder balanced data collection. To enhance educational utility, further research is needed on how to utilize feature importance derived from the Random Forest-based automated scoring model to generate useful information for teaching and learning, such as feedback. This study is significant as foundational research in the field of mathematics descriptive automatic scoring, and there is a need for various subsequent studies through close collaboration between AI experts and math education experts.

Classification of Diabetic Retinopathy using Mask R-CNN and Random Forest Method

  • Jung, Younghoon;Kim, Daewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.29-40
    • /
    • 2022
  • In this paper, we studied a system that detects and analyzes the pathological features of diabetic retinopathy using Mask R-CNN and a Random Forest classifier. Those are one of the deep learning techniques and automatically diagnoses diabetic retinopathy. Diabetic retinopathy can be diagnosed through fundus images taken with special equipment. Brightness, color tone, and contrast may vary depending on the device. Research and development of an automatic diagnosis system using artificial intelligence to help ophthalmologists make medical judgments possible. This system detects pathological features such as microvascular perfusion and retinal hemorrhage using the Mask R-CNN technique. It also diagnoses normal and abnormal conditions of the eye by using a Random Forest classifier after pre-processing. In order to improve the detection performance of the Mask R-CNN algorithm, image augmentation was performed and learning procedure was conducted. Dice similarity coefficients and mean accuracy were used as evaluation indicators to measure detection accuracy. The Faster R-CNN method was used as a control group, and the detection performance of the Mask R-CNN method through this study showed an average of 90% accuracy through Dice coefficients. In the case of mean accuracy it showed 91% accuracy. When diabetic retinopathy was diagnosed by learning a Random Forest classifier based on the detected pathological symptoms, the accuracy was 99%.