• Title/Summary/Keyword: Random Excitation Method

Search Result 123, Processing Time 0.023 seconds

Stationary random response analysis of linear fuzzy truss

  • Ma, J.;Chen, J.J.;Gao, W.;Zhao, Y.Y.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.469-481
    • /
    • 2006
  • A new method called fuzzy factor method for the stationary stochastic response analysis of fuzzy truss with global fuzzy structural parameters is presented in this paper. Considering the fuzziness of the structural physical parameters and geometric dimensions simultaneously, the fuzzy correlation function matrix of structural displacement response in time domain is derived by using the fuzzy factor method and the optimization method, the fuzzy mean square values of the structural displacement and stress response in the frequency domain are then developed with the fuzzy factor method. The influences of the fuzziness of structural parameters on the fuzziness of mean square values of the displacement and stress response are inspected via an example and some important conclusions are obtained. Finally, the example is simulated by Monte-Carlo method and the results of the two methods are close, which verified the feasibility of the method given in this paper.

Multiple failure criteria-based fragility curves for structures equipped with SATMDs

  • Bakhshinezhad, Sina;Mohebbi, Mohtasham
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.463-475
    • /
    • 2019
  • In this paper, a procedure to develop fragility curves of structures equipped with semi-active tuned mass dampers (SATMDs) considering multiple failure criteria has been presented while accounting for the uncertainties of the input excitation, structure and control device parameters. In this procedure, Latin hypercube sampling (LHS) method has been employed to generate 30 random SATMD-structure systems and nonlinear incremental dynamic analysis (IDA) has been conducted under 20 earthquakes to determine the structural responses, where failure probabilities in each intensity level have been evaluated using Monte Carlo simulation (MCS) method. For numerical analysis, an eight-story nonlinear shear building frame with bilinear hysteresis material behavior has been used. Fragility curves for the structure equipped with optimal SATMDs have been developed considering single and multiple failure criteria for different performance levels and compared with that of uncontrolled structure as well as structure controlled using passive tuned mass damper (TMD). Numerical analysis has shown the capability of SATMDs in significant enhancement of the seismic fragility of the nonlinear structure. Also, considering multiple failure criteria has led to increasing the fragility of the structure. Moreover, it is observed that the influence of the uncertainty of input excitation with respect to the other uncertainties is considerable.

Vibration based damage localization using MEMS on a suspension bridge model

  • Domaneschi, Marco;Limongelli, Maria Pina;Martinelli, Luca
    • Smart Structures and Systems
    • /
    • v.12 no.6
    • /
    • pp.679-694
    • /
    • 2013
  • In this paper the application of the Interpolation Damage Detection Method to the numerical model of a suspension bridge instrumented with a network of Micro-Electro-Mechanical System sensors is presented. The method, which, in its present formulation, belongs to Level II damage identification method, can identify the presence and the location of damage from responses recorded on the structure before and after a seismic damaging event. The application of the method does not require knowledge of the modal properties of the structure nor a numerical model of it. Emphasis is placed herein on the influence of recorded signals noise on the reliability of the results given by the Interpolation Damage Detection Method. The response of a suspension bridge to seismic excitation is computed from a numerical model and artificially corrupted with random noise characteristic of two families of Micro-Electro-Mechanical System accelerometers. The reliability of the results is checked for different damage scenarios.

Enhanced least square complex frequency method for operational modal analysis of noisy data

  • Akrami, V.;Zamani, S. Majid
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.263-273
    • /
    • 2018
  • Operational modal analysis is being widely used in aerospace, mechanical and civil engineering. Common research fields include optimal design and rehabilitation under dynamic loads, structural health monitoring, modification and control of dynamic response and analytical model updating. In many practical cases, influence of noise contamination in the recorded data makes it difficult to identify the modal parameters accurately. In this paper, an improved frequency domain method called Enhanced Least Square Complex Frequency (eLSCF) is developed to extract modal parameters from noisy recorded data. The proposed method makes the use of pre-defined approximate mode shape vectors to refine the cross-power spectral density matrix and extract fundamental frequency for the mode of interest. The efficiency of the proposed method is illustrated using an example five story shear frame loaded by random excitation and different noise signals.

Experimental Evaluation Method for Investigating BSR Noise of Vehicle Seats (차량용 시트의 BSR Noise 규명을 위한 시험적 평가방법)

  • Kim, Byung-Jin;Moon, Nam-Su;Park, Jin-Sung;Park, Hyun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.425-426
    • /
    • 2010
  • Recently, Most of diverse noise of vehicles has decreased competitively according to development of the automotive manufacturing technology. Especially, Passenger car manufacturers has been conducting buzz, squeak and rattle(BSR) noise test as a method of the noise evaluation tests to reduce an unpleasant sound from interior parts on the driving the car. This paper suggest a evaluation method for detecting position of noise source from measured noise signals of vehicle seats during random excitation BSR test. Hereby the BSR test procedure used the test regulation of 'G' company. The detection of noise source positions used the Sound image equipment. Through suggested the test method on this paper, an accurate analysis of noise source occurred in the BSR test will be possible.

  • PDF

Moment Lyapunov exponents of the Parametrical Hill's equation under the excitation of two correlated wideband noises

  • Janevski, Goran;Kozic, Predrag;Pavlovic, Ivan
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.525-540
    • /
    • 2014
  • The Lyapunov exponent and moment Lyapunov exponents of Hill's equation with frequency and damping coefficient fluctuated by correlated wideband random processes are studied in this paper. The method of stochastic averaging, both the first-order and the second-order, is applied. The averaged $It\hat{o}$ differential equation governing the pth norm is established and the pth moment Lyapunov exponents and Lyapunov exponent are then obtained. This method is applied to the study of the almost-sure and the moment stability of the stationary solution of the thin simply supported beam subjected to time-varying axial compressions and damping which are small intensity correlated stochastic excitations. The validity of the approximate results is checked by the numerical Monte Carlo simulation method for this stochastic system.

Experimental and analytical studies on stochastic seismic response control of structures with MR dampers

  • Mei, Zhen;Peng, Yongbo;Li, Jie
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.395-416
    • /
    • 2013
  • The magneto-rheological (MR) damper contributes to the new technology of structural vibration control. Its developments and applications have been paid significant attentions in earthquake engineering in recent years. Due to the shortages, however, inherent in deterministic control schemes where only several observed seismic accelerations are used as the trivial input and in classical stochastic optimal control theory with assumption of white noise process, the derived control policy cannot effectively accommodate the performance of randomly base-excited engineering structures. In this paper, the experimental and analytical studies on stochastic seismic response control of structures with specifically designed MR dampers are carried out. The random ground motion, as the base excitation posing upon the shaking table and the design load used for structural control system, is represented by the physically based stochastic ground motion model. Stochastic response analysis and reliability assessment of the tested structure are performed using the probability density evolution method and the theory of extreme value distribution. It is shown that the seismic response of the controlled structure with MR dampers gain a significant reduction compared with that of the uncontrolled structure, and the structural reliability is obviously strengthened as well.

Ground Vibration Test for Korea Sounding Rocket - III (KSR-III의 전기체 모달 시험)

  • 우성현;김영기;이동우;문남진;김홍배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.441-447
    • /
    • 2002
  • KSR-III(Korea Sounding Rocket - III), which is being developed by Space Technology R&D Division of KARI(Korea Aerospace Research Institute) will be launched in late 2002. It is a three-stage, liquid propellant rocket which can reach 250 km altitude and will carry out observation of ozone layer and scientific experiments, such as microgravity experiment, and atmospheric measurement. KSR-III is believed to be an intermediate to the launch vehicle capable of carrying a satellite to its orbit. Space Test Department of KARI performed GVT(Ground Vibration Test) fer KSR-III EM at Rocket Test Building of KARI. GVT is very important for predicting the behavior of rocket in its operation, developing flight control program and performing aerodynamic analysis. This paper gives an introduction of rocket GVT configuration and information on test procedures, techniques and results of It. In this test. to simulate free-free condition, test object hung in the air laterally by 4 bungee cords specially devised. For the excitation of test object, pure random signal by two electromagnetic shakers was used and total 22 frequency response functions were achieved. Polyreference parameter estimation was performed to identify the modal parameters with MIMO(Multi-Input-Multi-Output) method. As the result of the test, low frequency mode shapes and modal parameters below 60Hz were identified

  • PDF

Vibration Control of a Tracked Vehicle with ER Suspension Units (II);Modeling and Control of a Tracked Vehicle (ER 현수장치를 갖는 궤도 차량의 진동제어 (II);궤도차량의 모델링 및 제어)

  • Park, Dong-Won;Choe, Seung-Bok;Gang, Yun-Su;Seo, Mun-Seok;Sin, Min-Jae;Choe, Gyo-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1960-1969
    • /
    • 1999
  • This paper presents dynamic modeling and controller design of a tracked vehicle installed with the double rod type ERSU(electro-rheological suspension unit). A 16 degree-of-freedom model for the tracked vehicle is established by Lagrangian method followed by the formulation of a new sky-ground hook controller. This controller takes account for both the ride quality and the steering stability. The weighting parameter between the two performance requirements is adopted to adjust required performance characteristics with respect to the operation conditions such as road excitation. The parameter is appropriately determined by employing a fuzzy algorithm associated with the vehicle motion. Computer simulations are undertaken in order to demonstrate the effectiveness of the proposed control system. Acceleration values at the driver's seat are analyzed under bump road profile, while frequency responses of vertical acceleration are investigated under random road excitation.

Dynamic response of rotor-bearing systems under seismic excitations (지진 하중을 받고 있는 회전축-베어링 시스템의 동적 거동에 관한 연구)

  • 김기봉;김양한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.992-1002
    • /
    • 1988
  • The dynamic response of rotor-bearing systems subjected to six-component nonststionary earthquake ground accelerations is analyzed. The governing equations of motion for the rotor are derived using Lagrangian approach. The six-component earthquake inputs result in both inhomogeneous and parametric excitations, so that the conventional spectral analysis of random vibration is not applicable. The method of Monte Carlo simulation is utilized to simulate the six-component nonstationary earthquake ground motions and to determine the response statistics of rotor-bearing systems. The significant influences due to rotational motions of seismic base on the overall structural response is demonstrated by a numerical example.