• Title/Summary/Keyword: Random Analysis

Search Result 4,663, Processing Time 0.033 seconds

Random vibration analysis of structures by a time-domain explicit formulation method

  • Su, Cheng;Xu, Rui
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.239-260
    • /
    • 2014
  • Non-stationary random vibration of linear structures with uncertain parameters is investigated in this paper. A time-domain explicit formulation method is first presented for dynamic response analysis of deterministic structures subjected to non-stationary random excitations. The method is then employed to predict the random responses of a structure with given values of structural parameters, which are used to fit the conditional expectations of responses with relation to the structural random parameters by the response surface technique. Based on the total expectation theorem, the known conditional expectations are averaged to yield the random responses of stochastic structures as the total expectations. A numerical example involving a frame structure is investigated to illustrate the effectiveness of the present approach by comparison with the power spectrum method and the Monte Carlo simulation method. The proposed method is also applied to non-stationary random seismic analysis of a practical arch bridge with structural uncertainties, indicating the feasibility of the present approach for analysis of complex structures.

Stress Analysis of Top Hat Type Structure for Random Loading

  • M. J. Jhung;Kim, Y. B.;Lee, J. B.
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.476-487
    • /
    • 1997
  • To resolve several arguments raised for the current analysis of a structure like top hat, which is composed of flange, cylinder and plate, the dynamic response analysis is performed for the full and half models. The dynamic characteristics are investigated for full and half models and the results are compared between them. The responses such as bolt reactions and stresses due to random loading are also obtained using the analysis capabilities between commercial programs which have the routine for the random vibration analysis. Several general purpose structural analysis programs are used to get the response due to the random loadings. Also the application of the random loading and the effect of correlations such as fully correlated, partially correlated and fully uncorrelated cases are studied and the general directions for the generation of design loads due to random loading are suggested.

  • PDF

Stress Analysis of Top Hat Type Structure for Random Loading

  • Jhung, Myung-Jo;Hwang, Jong-Keun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.223-228
    • /
    • 1996
  • To resolve several arguments raised for the current analysis of a structure like top hat, which is composed of flange, cylinder and plate, the dynamic response analysis is performed for the full and half models. The dynamic characteristics are investigated for full and half models and the results are compared between them. The responses such as bolt reactions and stresses due to random loading are also obtained using the analysis capabilities between commercial programs which have the routine for the random vibration analysis. Several general purpose structural analysis programs are used to get the response due to the random loadings. Also the application of the random loading and the effect of correlations are studied and the general directions for the generation of design load due to random loading are suggested.

  • PDF

Time-domain hydroelastic analysis with efficient load estimation for random waves

  • Kang, H.Y.;Kim, M.H.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.266-281
    • /
    • 2017
  • Hydroelastic interactions of a deformable floating body with random waves are investigated in time domain. Both hydroelastic motion and structural dynamics are solved by expansion of elastic modes and Fourier transform for the random waves. A direct and efficient structural analysis in time domain is developed. In particular, an efficient way of obtaining distributive loads for the hydrodynamic integral terms including convolution integral by using Fubini theory is explained. After confirming correctness of respective loading components, calculations of full distributions of loads in random waves are expedited by reformulating all the body loading terms into distributed forms. The method is validated by extensive convergence tests and comparisons against the counterparts of the frequency-domain analysis. Characteristics of motion/deformation responses and stress resultants are investigated through a parametric study with varying bending rigidity and types of random waves. Relative contributions of componential loads are identified. The consequence of elastic-mode resonance is underscored.

Finite element fracture reliability of stochastic structures

  • Lee, J.C.;Ang, A.H.S.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • This study presents a methodology for the system reliability analysis of cracked structures with random material properties, which are modeled as random fields, and crack geometry under random static loads. The finite element method provides the computational framework to obtain the stress intensity solutions, and the first-order reliability method provides the basis for modeling and analysis of uncertainties. The ultimate structural system reliability is effectively evaluated by the stable configuration approach. Numerical examples are given for the case of random fracture toughness and load.

Maximal overlap discrete wavelet transform-based power trace alignment algorithm against random delay countermeasure

  • Paramasivam, Saravanan;PL, Srividhyaa Alamelu;Sathyamoorthi, Prashanth
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.512-523
    • /
    • 2022
  • Random delay countermeasures introduce random delays into the execution flow to break the synchronization and increase the complexity of the side channel attack. A novel method for attacking devices with random delay countermeasures has been proposed by using a maximal overlap discrete wavelet transform (MODWT)-based power trace alignment algorithm. Firstly, the random delay in the power traces is sensitized using MODWT to the captured power traces. Secondly, it is detected using the proposed random delay detection algorithm. Thirdly, random delays are removed by circular shifting in the wavelet domain, and finally, the power analysis attack is successfully mounted in the wavelet domain. Experimental validation of the proposed method with the National Institute of Standards and Technology certified Advanced Encryption Standard-128 cryptographic algorithm and the SAKURA-G platform showed a 7.5× reduction in measurements to disclosure and a 3.14× improvement in maximum correlation value when compared with similar works in the literature.

ITERATIVE ALGORITHM FOR RANDOM GENERALIZED NONLINEAR MIXED VARIATIONAL INCLUSIONS WITH RANDOM FUZZY MAPPINGS

  • Faizan Ahmad, Khan;Eid Musallam, Aljohani;Javid, Ali
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.881-894
    • /
    • 2022
  • In this paper, we consider a class of random generalized nonlinear mixed variational inclusions with random fuzzy mappings and random relaxed cocoercive mappings in real Hilbert spaces. We suggest and analyze an iterative algorithm for finding the approximate solution of this class of inclusions. Further, we discuss the convergence analysis of the iterative algorithm under some appropriate conditions. Our results can be viewed as a refinement and improvement of some known results in the literature.

Fatigue Life Assessment of Journal Box Attached to Bogie under Multiaxial Random Dynamic Loading (다축 Random Dynamic 하중을 받는 대차 저널박스의 피로수명평가)

  • Park, Sang-Goo;Kim, Seung-Seob;Han, Sung-Wook;Park, Geun-Su;Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1125-1131
    • /
    • 2009
  • This paper presents the evaluation of fatigue life for a journal box attached to rolling stock bogie under random dynamic loading condition. Because a journal box was under random dynamic loading conditions, the fatigue life assessment due to these loads requires the analysis considering the multiaxial effect of random dynamic loading. To do this work, the finite element analysis has been conducted to calculate random dynamic response using multiaxial acceleration data. Then, the fatigue life assessment of component has been conducted using vibration fatigue analysis applying the power spectral densities of the responses obtained through the FEA The results of fatigue life assessment were compared to the damage from the strain measurement. This study shows that can be evaluated the fatigue life assessment considering real service condition about a component attached to rolling stock bogie.

  • PDF

Reliability-based stochastic finite element using the explicit probability density function

  • Rezan Chobdarian;Azad Yazdani;Hooshang Dabbagh;Mohammad-Rashid Salimi
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.349-359
    • /
    • 2023
  • This paper presents a technique for determining the optimal number of elements in stochastic finite element analysis based on reliability analysis. Using the change-of-variable perturbation stochastic finite element approach, the probability density function of the dynamic responses of stochastic structures is explicitly determined. This method combines the perturbation stochastic finite element method with the change-of-variable technique into a united model. To further examine the relationships between the random fields, discretization of the random field parameters, such as the variance function and the scale of fluctuation, is also performed. Accordingly, the reliability index is calculated based on the explicit probability density function of responses with Gaussian or non-Gaussian random fields in any number of elements corresponding to the random field discretization. The numerical examples illustrate the effectiveness of the proposed method for a one-dimensional cantilever reinforced concrete column and a two-dimensional steel plate shear wall. The benefit of this method is that the probability density function of responses can be obtained explicitly without the use simulation techniques. Any type of random variable with any statistical distribution can be incorporated into the calculations, regardless of the restrictions imposed by the type of statistical distribution of random variables. Consequently, this method can be utilized as a suitable guideline for the efficient implementation of stochastic finite element analysis of structures, regardless of the statistical distribution of random variables.

DISSIPATIVE RANDOM DYNAMICAL SYSTEMS AND LEVINSON CENTER

  • Asmahan A. Yasir;Ihsan J. Kadhim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.521-535
    • /
    • 2023
  • In this work, some various types of Dissipativity in random dynamical systems are introduced and studied: point, compact, local, bounded and weak. Moreover, the notion of random Levinson center for compactly dissipative random dynamical systems presented and prove some essential results related with this notion.