• Title/Summary/Keyword: Ramjet Inlet

Search Result 52, Processing Time 0.023 seconds

An Experimental Study on the Characteristics of the Vitiated Air Heater in the Ramjet Engine Ground-Testing (램제트 엔진의 지상시험용 Vitiated Air Heater의 특성에 관한 실험적 연구)

  • 윤현진;손창현;이충원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.51-57
    • /
    • 1999
  • Temperature and velocity controlling of air at inlet position of Ramjet combustor is important under Ramjet engine grounding-test condition since temperature of inlet air increases due to compression process by supersonic flow at inlet position of Ramjet combustor. In this study, Vitiated Air Heater methodology was used to control temperature of air that is inducted into Ramjet combustor. Temperature and velocity of air at Vitiated air heater exit, which is inducted into Ramjet combustor, were measured to evaluate Vitiated air heater system developed in this study. It is shown that temperature and velocity of inducted air can be well controlled using Vitiated air heater system developed in this study, and we could make a Vitiated Air which is almost same with real air.

  • PDF

Characteristics of the Inlet with the Pressure Perturbation in the Ramjet Engine

  • Shin, Dong-Shin;Kang, Ho-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.286-294
    • /
    • 2006
  • Flows in a ramjet inlet is simulated for the study of the rocket-ramjet transition. The flow is unsteady, two-dimensional axisymmetric, compressible and turbulent. Double time marching method is used for the unsteady calculation and HLLC method is used as a higher order MUSCL method. As for turbulent calculation, $\kappa-\omega$ SST model is used for more accurate viscous calculations. Sinusoidal pressure perturbation is given at the exit and the flow fields at the inlet is studied. The cruise condition as well as the ground test condition are considered. The pressure level for the ground test condition is relatively low and the effect of the pressure perturbation at the combustion chamber is small. The normal shock at the cruise condition is very sensitive to the pressure perturbation and can be easily detached from the cowl when the exit pressure is relatively high. The sudden decrease in the mass flux is observed when the inlet flow becomes subcritical, which can make the inlet incapable. The amplitude of travelling pressure waves becomes larger as the downstream pressure increases, and the wavelength becomes shorter as Mach number increases. The phase difference of the travelling perturbed pressure wave in space is 180 degree.

A Numerical Analysis of Supersonic Intake Buzz in an Axisymmetric Ramjet Engine

  • Yeom, Hyo-Won;Sung, Hong-Gye;Yang, Vigor
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.165-176
    • /
    • 2015
  • A numerical analysis was conducted to investigate the inlet buzz and combustion oscillation in an axisymmetric ramjet engine with wedge-type flame holders. The physical model of concern includes the entire engine flow path, extending from the leading edge of the inlet center-body through the exhaust nozzle. The theoretical formulation is based on the Farve-averaged conservation equations of mass, momentum, energy, and species concentration, and accommodates finite-rate chemical kinetics and variable thermo-physical properties. Turbulence closure is achieved using a combined scheme comprising of a low-Reynolds number k-${\varepsilon}$ two-equation model and Sarkar's compressible turbulence model. Detailed flow phenomena such as inlet flow aerodynamics, flame evolution, and acoustic excitation as well as their interactions, are investigated. Mechanisms responsible for driving the inlet buzz are identified and quantified for the engine operating at subcritical conditions.

Numerical Analysis on the Mode Transition of Integrated Rocket-Ramjet and Unstable Combusting Flow-Field (일체형 로켓-램제트 모드 천이 및 불안정 연소 유동장 해석)

  • Ko Hyun;Park Byung-Hoon;Yoon Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.334-342
    • /
    • 2005
  • A numerical analysis is performed using two dimensional axisymmetric RANS (Reynolds Averaged Navier-Stokes) equations system on the transition sequence of the Integrated Rocket Ramjet and the unsteady reacting flow-field in a ramjet combustor during unstable combustion. The mode transition of an axisymmetric ramjet is numerically simulated starting from the initial condition of the boost end phase of the entire ramjet. The unsteady reacting flow-field within combustor is computed for varying injection area. In calculation results of the transition, the terminal normal shock is occurred at the downstream of diffuser throat section and no notable combustor pressure oscillation is observed after certain time of the inlet port cover open. For the case of a small injection area at the same equivalence ratio, periodic pressure oscillation in the combustor leads to the terminal shock expulsion from the inlet and hence the buzz instability occurred.

  • PDF

Altitude Effects on the Combustion of the Solid Fuel Ramjet

  • Lee, Tae-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.476-479
    • /
    • 2008
  • The combustion efficiency of the solid fuel ramjet is affected by the inlet air temperature. And this inlet air temperature is dependent on the flight Mach number and the environment air temperature. If the flight altitude is changeable, the inlet air temperature and the air density also vary. The performance efficiency is investigated with this variables related to the combustion efficiency.

  • PDF

Optimal Configuration of a Liquid Ramjet Combustor using PIV Method (PIV측정을 통한 램제트 연소기의 최적 형상)

  • 손창현;김규남;문수연;이충원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.46-49
    • /
    • 2002
  • Three-dimensional flow characteristics in a liquid fuel ramjet combustor were investigated using the PIV method. The combustor has two rectangular inlets that loin a 90-degree angle each other. Three cases of test combustors are made in which those inlet angles are 30 degree, 45degree and 60 degree. The experiments were performed in a water tunnel test with the same Reynolds number as Mach 0.3 at the inlet. PIV software was developed to measure the characteristics of the flow field in the combustor. Accuracy of the developed PIV program was verified with a rotating disk experiment and standard data. The characteristics of the internal flows of the combustor are large swirling flows which appear symmetric with respect to the symmetric section. This is attributed to the fact that the flows introduced from the right and left intakes collide with each other, thus forming symmetrically large vortices. A large and complex three-dimensional recirculating flow was measured behind the intakes. An inlet angle of 30 degrees is the most suitable angle as a frame he]der in the performed experimental ranges.

  • PDF

Numerical Study on the Coaxial Ramjet Combustor with a Flame Holder (램제트 연소기의 보염기 장착에 따른 연소기 특성 변화에 대한 수치적 연구)

  • Kim, Sung-Don;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.114-117
    • /
    • 2007
  • In IRR(Integral Rocket-Ramjet), the booster is integrated into the ramjet combustor. Such combustors do not contain combustor liners or flame holders within the combustor due to the limited volume and flame stabilization depends on the recirculation zones formed by the sudden expansion region between the inlet duct and the combustor. A numerical study was conducted on the effect of flame holder which could be added to the inlet duct of IRR. Two different types of flame holder installations, flame holder without sudden expansion region and flame holder with small sudden expansion region, were compared and showed different flame shapes and pressure rise in the combustor.

  • PDF

Recirculation Characteristics by the Inlet Angle and Dome Size of a Liquid Ramjet Combustor using PIV Method (PIV측정을 통한 램제트 연소기의 유입각과 돔 크기에 따른 선회 유동 특성)

  • Kim, Gyu-Nam;Lee, Choong-Won;Sohn, Chang-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.51-56
    • /
    • 2007
  • Flow characteristics in a liquid fuel ramjet combustor were investigated using the PIV method. The combustor has two rectangular inlets that form a $90^{\circ}$ angle each other. Three cases of test combustors are made in which those inlet angles are $30^{\circ},\;45^{\circ}\;and\;60^{\circ}$. The experiments were performed in a water tunnel test with the same Reynolds number as Mach 0.3 at the inlet. PIV software was developed to measure the characteristics of the flow field in the combustor. A large and complex recirculating flow was measured in the dome area with 4 different dome size. Experimental results shows that 1/3 dome size of combustor diameter is suitable and smaller inlet angle provide large recirculation flow at the dome of combustor as a frame holder in this experimental ranges but need to consider secondary recirculation flow in a junction region to optimize the configuration of ramjet combustor.

Investigations of Three Dimensional Flow Characteristics in the Liquid Ramjet Combustor using PIV Method (PIV를 이용한 액체램제트 연소기내의 3차원 유동특성 연구)

  • Yang, G.S.;Sohn, C.R.;Cho, D.W.;Kim, G.N.;Moon, S.Y.;Lee, C.W.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.271-275
    • /
    • 2001
  • Three dimensional flow characteristics in a liquid fuel ramjet combustor are investigated using PIV method. The combustors have two rectangular inlets that form 90 degree each other. Three guide vane is installed in each rectangular inlet to improve the flow stability. We made three cases of test combustors in which those inlet angles are 30 degree, 45 degree and 60 degree. Each combustor easily changes the size of combustor's recirculation zone with the replacement of combustors dome. The experiments are performed in the water tunnel test with the same Reynolds number in the case of Mach 0.3 at inlet. PIV software is developed to measure the flow field in the combustor and the accuracy of developed PIV program is verified with rotating disk experiment and standard data. The experimental results show that the two main streams from rectangular inlet collide near the plane of symmetry and generate two large longitudinal vortex, A large and complex three-dimensional recirculating flow is measured in the recirculation zone.

  • PDF

Variable Inlet Design for Hypersonic Engines with a Wide Range of Flight Mach Numbers (광대역 마하수 비행을 위한 극초음속 엔진 흡입구의 가변형상 설계)

  • Kang, Sang Hun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.65-72
    • /
    • 2015
  • In present study, a supersonic inlet for dual mode ramjets or RBCC/TBCC engines with a wide range of flight Mach numbers is designed. A conical variable inlet configuration is chosen for the inlet design. Geometric relations with angles of compression cones and conical shock waves are used for the design of the inlet configuration. The performance of the supersonic inlet is confirmed by the numerical analysis. The capture area ratio is maintained around 100% from Mach 3 to 8 conditions.