• Title/Summary/Keyword: Raman analysis

Search Result 463, Processing Time 0.026 seconds

Long Distance Identification of Water and Oil using an Ultraviolet Fluorescence Measurement System (원거리의 물과 오일을 구별할 수 있는 UV형광측정시스템 개발과 분석에 대한 연구)

  • Baek, Kyung-hoon;Lee, Joon-seok;Jeon, Su-jeong;Park, Bo-ram;Park, Seong-wook
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.266-270
    • /
    • 2022
  • Owing to the rising volume of seaborne trade, oil spills damage the marine environment for over 250 yearly. Thus, various analysis methods such as the Fourier-transform infrared (FTIR), Raman spectroscope, and gas chromatography are used to monitor oil spills at sea, but these methods are expensive. Recently, to reduce operational costs, an underwater fluorometer was adopted. However, this approach is not ideal for the remote sensing of oil spills because the device gets submerged in the sea. In this study, we have designed and developed a monitoring system that uses ultraviolet fluorescence to detect spilled oil or water from a distance, as well as proposed an analyzing method defining based on water Raman signal and QF535. Each fluorescence spectrum of water, oil (crude oil), and Bunker A was obtained using the system, and was calculated and analyzed from the spectrum individually. Based on the results of the analysis, we could successfully identity water and oil at a long distance.

Non-Destructive Sorting Techniques for Viable Pepper (Capsicum annuum L.) Seeds Using Fourier Transform Near-Infrared and Raman Spectroscopy

  • Seo, Young-Wook;Ahn, Chi Kook;Lee, Hoonsoo;Park, Eunsoo;Mo, Changyeun;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.1
    • /
    • pp.51-59
    • /
    • 2016
  • Purpose: This study examined the performance of two spectroscopy methods and multivariate classification methods to discriminate viable pepper seeds from their non-viable counterparts. Methods: A classification model for viable seeds was developed using partial least square discrimination analysis (PLS-DA) with Fourier transform near-infrared (FT-NIR) and Raman spectroscopic data in the range of $9080-4150cm^{-1}$ (1400-2400 nm) and $1800-970cm^{-1}$, respectively. The datasets were divided into 70% to calibration and 30% to validation. To reduce noise from the spectra and compare the classification results, preprocessing methods, such as mean, maximum, and range normalization, multivariate scattering correction, standard normal variate, and $1^{st}$ and $2^{nd}$ derivatives with the Savitzky-Golay algorithm were used. Results: The classification accuracies for calibration using FT-NIR and Raman spectroscopy were both 99% with first derivative, whereas the validation accuracies were 90.5% with both multivariate scattering correction and standard normal variate, and 96.4% with the raw data (non-preprocessed data). Conclusions: These results indicate that FT-NIR and Raman spectroscopy are valuable tools for a feasible classification and evaluation of viable pepper seeds by providing useful information based on PLS-DA and the threshold value.

Structural Analysis of Species in NbCI5-EMIC Room-Temperature Molten Salt with Raman Spectroscopic Measurement and Ab Initio Molecular Orbital Calculation

  • Koura, Nobuyuki;Matsuzawa, Hidenori;Kato, Tomoki;Idemoto, Yasushi;Matsumoto, Futoshi
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.183-188
    • /
    • 2002
  • The structure of species formed in $NbCI_5-I-ethyl-3-methylimidazolium$ chloride (EMIC) room-temperature molten salt (RTMS) was examined with the Raman spectroscopic measurement and ab initio molecular orbital calculation. The equilibrium structures of $NbCl_5,\;NbCl_6^-,\;Nb_2CI_{10},\;Nb_2CI_{11}^-,\;Nb_3CI_6^-,\;NbCI_6^--EMI^+\;(in\;which\;NbCI_6^-$ anion approaches $EMI^+$ cation with strong interaction) and $Nb_2CI_{11}^--EMI^+$ were obtained with the HF/LANL2DZ level of calculation. The harmonic frequencies at each equilibrium structure were compared with Raman spectra. The harmonic frequencies of $NbCI_6^--EMI^+,\; Nb_2CI_{11}^--EMI^+,\;and\;Nb_2CI_{10}$ were in good agreement with the Raman spectra of RTMS melts. In the $NbCI_5-EMIC RTMS$, the main species were $NbCI_6^-\;and\;EMI^+$. In the $NbCl_5-EMIC$ RTMS added $NbCl_5\;over\;50mol\%$, small amount of $Nb_2CI_{11}^-\;and\; Nb_2CI_{10}$ were also formed. The structures of anions and cation in the RTMS distorted from free ions with Coulomb force.

Optical properties of diamond-like carbon films deposited by ECR-PECVD method (ECR-PECVD 방법으로 증착한 Diamond-Like carbon 박막의 광 특성)

  • Kim, Dae-Nyoun;Kim, Ki-Hong;Kim, Hye-Dong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.2
    • /
    • pp.291-299
    • /
    • 2004
  • DLC films were deposited using the ECR-PECVD method with the fixed deposition condition, such as ECR power, methane and hydrogen gas-flow rates and deposition time, for various substrate bias voltage. We have investigated the ion bombardment effect induced by the substrate bias voltage on films during the deposition of film. The characteristic of the films were analyzed using the FTIR, Raman, and UV/Vis spectroscopy analysis shows that the amount of dehydrogenation in films was increased with the increase of substrate bias voltage and films thickness was decreased. Raman scattering analysis shows that integrated intensity ratio(ID/IG) of the D and G peak was increased as the substrate bias voltage increased and films hardness was increased. Optical transmittances of DLC film were decreased with increasing deposition time and substrate bias voltage. From these results, it can be concluded that films deposited at this experimental have the enhanced characteristics of DLC because of the ion bombardment effect on films during the deposition of film.

  • PDF

Effect of Substrate Bias Voltage on DLC Films Prepared by ECR-PECVD (ECR-PECVD 방법으로 제작된 DLC 박막의 기판 Bias 전압 효과)

  • 손영호;정우철;정재인;박노길;김인수;김기홍;배인호
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.328-334
    • /
    • 2000
  • DLC (Diamond-Like Carbon) films were deposited by ECR-PECVD (electron cyclotron resonance plasma-enhanced chemical vapor deposition) method with the variation of substrate bias voltage under the others are constant except it. We have investigated the ion bombardment effect induced by the substrate bias voltage on films during the deposition of film. The characteristics of the film were analyzed using the Dektak surface profiler, SEM, FTIR spectroscopy, Raman spectroscopy and Nano Indentation tester. FTIR spectroscopy analysis shows that the amount of dehydrogenation in films was increased with the increase of substrate bias voltage and films thickness was decreased. Raman scattering analysis shows that integrated intensity ratio $(I_D /I_G)$ of the D and G peak was increased as the substrate bias voltage increased, and films hardness was increased. From these results, it can be concluded that films deposited at this experimental have the enhanced characteristics of DLC because of the ion bombardment effect on films during the deposition of film.

  • PDF

Line-shape analysis of the Raman-spectrum from B1g bond buckling phonon in Bi2Sr2CaCu2O8+x

  • Jeong, J.;Oh, D.;Song, D.;Eisaki, H.;Kim, C.;Park, S.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.9-12
    • /
    • 2019
  • We performed Raman spectroscopy on two different over-doped Bi2Sr2CaCu2O8+x (BSCCO), of which superconducting transition temperatures are 89 K and 77 K. Line-shape analysis of the Raman-spectrum was done, focused on B1g bond buckling mode which have drawn a lot of attention, since photoemission studies showed an evidence for strong coupling between the mode and electron. The line-shapes show asymmetry and are well fitted by the Fano line-shape formula. Remarkably, we found that the peak line-widths from B1g bond buckling mode in BSCCO show much broader than those in YBa2Cu3O7-x. The broad line width can be attributed to the superstructure modulation of BSCCO. Our results imply that B1g bond buckling mode may have close relation to the origin of superconductivity or to boosting the superconducting transition temperature in BSCCO.

A comparison of ATR-FTIR and Raman spectroscopy for the non-destructive examination of terpenoids in medicinal plants essential oils

  • Rahul Joshi;Sushma Kholiya;Himanshu Pandey;Ritu Joshi;Omia Emmanuel;Ameeta Tewari;Taehyun Kim;Byoung-Kwan Cho
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.675-696
    • /
    • 2023
  • Terpenoids, also referred to as terpenes, are a large family of naturally occurring chemical compounds present in the essential oils extracted from medicinal plants. In this study, a nondestructive methodology was created by combining ATR-FT-IR (attenuated total reflectance-Fourier transform infrared), and Raman spectroscopy for the terpenoids assessment in medicinal plants essential oils from ten different geographical locations. Partial least squares regression (PLSR) and support vector regression (SVR) were used as machine learning methodologies. However, a deep learning based model called as one-dimensional convolutional neural network (1D CNN) were also developed for models comparison. With a correlation coefficient (R2) of 0.999 and a lowest RMSEP (root mean squared error of prediction) of 0.006% for the prediction datasets, the SVR model created for FT-IR spectral data outperformed both the PLSR and 1 D CNN models. On the other hand, for the classification of essential oils derived from plants collected from various geographical regions, the created SVM (support vector machine) classification model for Raman spectroscopic data obtained an overall classification accuracy of 0.997% which was superior than the FT-IR (0.986%) data. Based on the results we propose that FT-IR spectroscopy, when coupled with the SVR model, has a significant potential for the non-destructive identification of terpenoids in essential oils compared with destructive chemical analysis methods.

Analysis and Conservation of Historic Textiles - Theory and Practice - (섬유 문화재의 분석과 보존처리 - 이론과 실제 -)

  • Oh, Joon-Suk
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.5
    • /
    • pp.211-231
    • /
    • 2008
  • To conserve historic textiles, analyses of textile materials, pollutants and deterioration are prerequisite steps. Based upon analytical results, guides for conservation of historic textiles are established. In analyses of textile materials, pollutants and deterioration, there are chemical methods(burning, solubility and staining), physical methods(microscopy and density) and instrumental analysis(Fourier Transform Infrared Spectroscopy (FT-IR), Fourier Transform Raman Spectroscopy(FT-Raman), Gas Chromatography(GC), Mass Spectroscopy(MS), X-Ray Fluorescence (EDXRF, WDXRF), Energy Dispersive Spectroscopy(EDS), and X-Ray Diffraction(XRD), Tensile Testing Machine etc.). Combination of qualitative and quantitative analyses makes accurate diagnosis of textile condition possible. As examples of analyses and conservation of historic textiles, Chuninsan(19 century) similar to sunshade with handing down historic textile and golden decorative skirt(17 century) with excavated costume are taken.