• Title/Summary/Keyword: Raman Spectroscopy

Search Result 1,141, Processing Time 0.026 seconds

The Study of Doxorubicin and its Complex with DNA by SERS and UV-resonance Raman Spectroscopy

  • Lee, Chul-Jae;Kang, Jae-Soo;Kim, Mak-Soon;Lee, Kwang-Pill;Lee, Mu-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1211-1216
    • /
    • 2004
  • The interaction of the antitumour agent doxorubicin with calf thymus DNA is investigated in an aqueous solution at a pH level of 6-7 with molar ratios of 1/10. A UV-resonance Raman spectroscopy and surface enhanced Raman spectroscopy are used to determine the doxorubicin binding sites and the structural variations of doxorubicin-DNA complexes in an aqueous solution. Doxorubicin intercalates with adenine and guanine via a hydrogen bond formation between the N7 positions of purine bases and the hydroxyl group of doxorubicin.

Compositional Analysis of Naphtha by FT-Raman Spectroscopy

  • 구민식;정호일
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.2
    • /
    • pp.159-162
    • /
    • 1999
  • Three different chemical compositions of total paraffin, total naphthene, total aromatic content in naphtha have been successfully analyzed using FT-Raman spectroscopy. Partial least squares (PLS) regression has been utilized to develop calibration models for each composition from Raman spectral bands. The PLS calibration results showed Blood correlation with those of gas chromatography (GC). Using PLS regression, the spectral information related to each composition has been successfully extracted from highly overlapped Raman spectra of naphtha.

Microstructural Analysis of Slags using Raman Micro Spectroscope

  • Park, Su Kyoung;Kwon, In Cheol;Lee, Su Jeong;Huh, Il Kwon;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.35 no.2
    • /
    • pp.145-152
    • /
    • 2019
  • The metal-manufacturing method and smelting temperature of ancient metal-production processes have been studied by analyzing the principal elements and microstructures of slag. However, the microstructure of slag varies according to the solidification cooling rate and types and relative amounts of various oxides contained within the smelting materials. Hence, there is a need for accurate analysis methods that allow slag to be distinguished by more than its composition or microstructure. In this study, the microstructures of slag discharged as a result of smelting iron sands collected from Pohang and Gyeongju, as well as the slag excavated from the Ungyo site in Wanju, were analyzed by using metalloscopy, scanning election microscopy-energy dispersine X-ray spectroscopy(SEM-EDS) and wavelength dispersive X-ray fluorenscence(WD-XRF). Furthermore, the microcrystals were accurately characterized by performing Raman micro-spectroscopy, which is a technique that can be used to identify the microcrystals of slags. SEM-EDS analysis of Pohang slag indicated that its white polygonal crystals could be Magnetite; however, Raman micro-spectroscopy revealed that these crystals were actually $ulv{\ddot{o}}spinel$. Raman micro-spectroscopy and SEM-EDS were also used to verify that the coarse white dendritic structures observed in the Gyeongju-slag were $W{\ddot{u}}stites$. Additionally, the Wanju slag was observed to have a glassy matrix, which was confirmed by Raman micro-spectroscopy to be Augite. Thus, we have demonstrated that Raman micro-spectroscopy can accurately identify slag microcrystals, which are otherwise difficult to distinguish as solely based on their chemical composition and crystal morphology. Therefore, we conclude that it has excellent potential as a slag analysis technique.

Feasibility Study for Detection of Turnip yellow mosaic virus (TYMV) Infection of Chinese Cabbage Plants Using Raman Spectroscopy

  • Kim, Saetbyeol;Lee, Sanguk;Chi, Hee-Youn;Kim, Mi-Kyeong;Kim, Jeong-Soo;Lee, Su-Heon;Chung, Hoeil
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.105-109
    • /
    • 2013
  • Raman spectroscopy provides many advantages compared to other common analytical techniques due to its ability of rapid and accurate identification of unknown specimens as well as simple sample preparation. Here, we described potential of Raman spectroscopic technique as an efficient and high throughput method to detect plants infected by economically important viruses. To enhance the detection sensitivity of Raman measurement, surface enhanced Raman scattering (SERS) was employed. Spectra of extracts from healthy and Turnip yellow mosaic virus (TYMV) infected Chinese cabbage leaves were collected by mixing with gold (Au) nanoparticles. Our result showed that TYMV infected plants could be discriminated from non-infected healthy plants, suggesting the current method described here would be an alternative potential tool to screen virus-infection of plants in fields although it needs more studies to generalize the technique.

Raman Spectroscopy Studies of Graphene Nanoribbons and Chemical Doping in Graphene

  • Ryu, Sun-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.15-15
    • /
    • 2011
  • Atom-thick graphene membrane and nano-sized graphene objects (NGOs) hold substantial potential for applications in future molecular-scale integrated electronics, transparent conducting membranes, nanocomposites, etc. To realize this potential, chemical properties of graphene need to be understood and diagnostic methods for various NGOs are also required. To meet these needs, chemical properties of graphene and optical diagnostics of graphene nanoribbons (GNRs) have been explored by Raman spectroscopy, AFM and STM scanning probes. The first part of the talk will illustrate the role of underlying silicon dioxide substrates and ambient gases in the ubiquitous hole doping of graphene. An STM study reveals that thermal annealing generates out-of-plane deformation of nanometer-scale wavelength and distortion in $sp^2$ bonding on an atomic scale. Graphene deformed by annealing is found to be chemically active enough to bind molecular oxygen, which leads to a strong hole-doping. The talk will also introduce Raman spectroscopy studies of GNRs which are known to have nonzero electronic bandgap due to confinement effect. GNRs of width ranging from 15 nm to 100 nm have been prepared by e-beam lithographic patterning of mechanically exfoliated graphene followed by oxygen plasma etching. Raman spectra of narrow GNRs can be characterized by upshifted G band and strong disorder-related D band originating from scattering at ribbon edges. Detailed analysis of the G, D, and 2D bands of GNRs proves that Raman spectroscopy is still a reliable tool in characterizing GNRs despite their nanometer width.

  • PDF

Structural Study of the Oxidized High Modulus Carbon Fiber using Laser Raman Spectroscopy

  • Roh, Jae-Seung;Kim, Suk-Hwan
    • Carbon letters
    • /
    • v.10 no.1
    • /
    • pp.38-42
    • /
    • 2009
  • This study aims to find a correlation between XRD and Raman result of the oxidized high modulus carbon fibers as a function of its oxidation degrees, and compare with the isotropic carbon fiber reported early. La of the high modulus carbon fiber prepared by oxidation in carbon dioxide gas have been observed using laser Raman spectroscopy. The basic structural parameters of the fibers were evaluated by XRD as well. The La of the original high modulus carbon fibers were measured to be 144 ${\AA}$ from Raman analysis and 135 ${\AA}$ from XRD analysis. La of the 92% oxidized fiber were 168 ${\AA}$ by using Raman and 182 ${\AA}$ by using XRD. There was some correlation between the La value obtained from Raman and XRD. However the La value changes of the high modulus carbon fiber through whole oxidation process showed opposite tendency compare with the isotropic carbon fiber because of the fiber structure basically.

Raman Spectroscopy of the Solid Solution Limit in $Li_{1-X}Al_{2X}Ta_{1-X}O_3$ System (Raman 분광법을 이용한 $Li_{1-X}Al_{2X}Ta_{1-X}O_3$ 고용한계 분석)

  • Kim, Chong-Don;Hong, Kug-Sun;Joo, Gi-Tae
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.115-120
    • /
    • 1992
  • The upper limit of solid solution of $Al_2O_3$ in $LiTaO_3$ was investigated using X-ray diffraction and Raman spectroscopy. By substituting cations in $LiTaO_3$ with $Al^{3+}$, the melting temperature was lowed and the ferroelectric properties can be improved. It is easier at lower temperature to fabricate the single crystal used for SAW filters and IR sensors. From the measured lattice constants and Raman band broadening, the solubility limit was X=0.25mol in $Li_{1-X}Al_{2X}Ta{1-X}O_3$, above which $Al_2O_3$ was obsered as a second phase. The Raman band of sintered $LiTaO_3$ was compared with that of the single crystal to see the effect of grain size on the band broadening.

  • PDF