• Title/Summary/Keyword: Ral

Search Result 84, Processing Time 0.032 seconds

The Molecular Functions of RalBP1 in Lung Cancer

  • Lee, Seunghyung
    • Biomedical Science Letters
    • /
    • v.20 no.2
    • /
    • pp.49-55
    • /
    • 2014
  • RalBP1 is an ATP-dependent non-ABC transporter, responsible for the major transport function in many cells including many cancer cell lines, causing efflux of glutathione-electrophile conjugates of both endogenous metabolites and environmental toxins. RalBP1 is expressed in most human tissues, and is over-expressed in non-small cell lung cancer cell lines and in many other tumor types. Blockade of RalBP1 by various approaches has been shown to increase sensitivity to radiation and chemotherapeutic drugs, leading to cell apoptosis. In xenograft tumor models in mice, RalBP1 blockade or depletion results in complete and sustained regression across many cancer cell types including lung cancer cells. In addition to its transport function, RalBP1 has many other cellular and physiological functions, based on its domain structure which includes a unique Ral-binding domain and a RhoGAP catalytic domain, as well as docking sites for multiple signaling proteins. Additionally, RalBP1 is also important for stromal cell function in tumors, as it was recently shown to be required for efficient endothelial cell function and angiogenesis in solid tumors. In this review, we discuss the cellular and physiological functions of RalBP1 in normal and lung cancer cells.

Rosa acicularis Leaves Exert Anti-Obesity Activity through AMPK-Dependent Lipolysis and Thermogenesis in Mouse Adipocytes, 3T3-L1 Cells

  • Jeong Won Choi;Hyeok Jin Choi;Jin Boo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.37 no.3
    • /
    • pp.247-255
    • /
    • 2024
  • In this study, we aimed to verify the anti-obesity activity of R. acicularis leaves (RAL) and elucidate its mechanism of action in 3T3-L1 preadipocytes. RAL dose-dependently inhibited the accumulation of lipid droplets and triacylglycerol. RAL did not affect cell proliferation and survival in undifferentiated 3T3-L1 cells, but it inhibited cell proliferation in differentiating 3T3-L1 cells. RAL increased ATGL, p-HSL, and HSL, and decreased perilipin-1 in differentiating 3T3-L1 cells. In addition, RAL reduced lipid droplet accumulation and increased free glycerol content in differentiated 3T3-L1 cells. RAL increased ATGL and HSL in differentiated 3T3-L1 cells. Also, RAL increased p-AMPK, PPARγ, UCP-1, and PGC-1α in differentiating 3T3-L1 cells. AMPK inhibition by compound C attenuated RAL-mediated increase of ATGL, HSL, PPARγ, and UCP-1 in 3T3-L1 cells. Taken together, it is thought that RAL may inhibit lipid accumulation through lipolysis and thermogenesis via the activation of AMPK in adipocytes.

Regulation of c-fos promoter through interaction between dopamine D3 receptor and RGL, ral GDP dissociation stimulator-like

  • Park, Ju-Ran;Kim, So-Young;Kim, Kyeong-Man
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.89.2-89.2
    • /
    • 2003
  • Ral GDP dissociation stimulator (Ral GDS) has been found to be an effector protein of Ras, and Ral, a member of small GTP-binding protein (G protein) superfamily, has been suggested to act downstream of Ras. Ral GDP dissociation stimulator-like (RGL) shares 50% amino acid identity with Ral GDP dissociation stimulator, and assumed to possess similar functional role. Using yeast two-hybrid screening, we found that dopamine D3 receptor interacts with RGL. Since RGL is known to regulate the expression of c-fos promoter, effects of D3R on gene expression of c-fos promoter was studied. (omitted)

  • PDF

Induction of Autophagy by Rosa acicularis Leaves Extracts in RAW264.7 Cells

  • Jeong Won Choi;Hyeok Jin Choi;Gwang Hyeon Ryu;Seung Woo Im;Jae Won Lee;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.45-45
    • /
    • 2023
  • Autophagy contributes to enhancing the immune system (innate and adaptive immune system) against foreign pathogens. Autophagy of macrophages is used as a major indicator for developing vaccine adjuvants to increase the adaptive immune response. In this study, RAL increased the production of immunostimulatory mediators and phagocytotic activity in RAW264.7 cells. RAL increased p62/SQSTM1 expression. Inhibition of TLR4, JNK, and PI3K/AKT blocked RAL-mediated increase of p62/SQSTM1. RAL activated JNK and PI3K/AKT signaling. RAL-mediated activation of JNK and PI3K/AKT signaling was reversed by TLR4 inhibition. Taken together, it is believed that RAL-mediated autophagy may be dependent on activating via TLR4-dependent activation of JNK and PI3K/AKT signaling in macrophages.

  • PDF

Elevated RalA activity in the hippocampus of PI3Kγ knock-out mice lacking NMDAR-dependent long-term depression

  • Sim, Su-Eon;Lee, Hye-Ryeon;Kim, Jae-Ick;Choi, Sun-Lim;Bakes, Joseph;Jang, Deok-Jin;Lee, Kyungmin;Han, Kihoon;Kim, Eunjoon;Kaang, Bong-Kiun
    • BMB Reports
    • /
    • v.46 no.2
    • /
    • pp.103-106
    • /
    • 2013
  • Phosphoinositide 3-kinases (PI3Ks) play key roles in synaptic plasticity and cognitive functions in the brain. We recently found that genetic deletion of $PI3K{\gamma}$, the only known member of class IB PI3Ks, results in impaired N-methyl-D-aspartate receptor-dependent long-term depression (NMDAR-LTD) in the hippocampus. The activity of RalA, a small GTP-binding protein, increases following NMDAR-LTD inducing stimuli, and this increase in RalA activity is essential for inducing NMDAR-LTD. We found that RalA activity increased significantly in $PI3K{\gamma}$ knockout mice. Furthermore, NMDAR-LTD-inducing stimuli did not increase RalA activity in $PI3K{\gamma}$ knockout mice. These results suggest that constitutively increased RalA activity occludes further increases in RalA activity during induction of LTD, causing impaired NMDAR-LTD. We propose that $PI3K{\gamma}$ regulates the activity of RalA, which is one of the molecular mechanisms inducing NMDAR-dependent LTD.

Rosa acicularis Leaves Exert Anti-obesity Activity through AMPK-dependent Lipolysis and Thermogenesis in Mouse Adipocytes, 3T3-L1 Cells

  • Jeong Won Choi;Hyeok Jin Choi;Gwang Hyeon Ryu;Seung Woo Im;Jae Won Lee;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.46-46
    • /
    • 2023
  • It has been reported that Rosa acicularis has anti-obesity activity by inhibiting the digestive lipase activity. However, there is a lack of clear in vitro studies regarding the anti-obesity activity of Rosa acicularis. Therefore, in this study, we aimed to verify the anti-obesity activity of Rosa acicularis leaves (RAL) and elucidate its mechanism of action in 3T3-L1 preadipocytes. RAL dose-dependently inhibited the accumulation of lipid droplets and triacylglycerol. RAL had no effect on cell proliferation and survival in undifferentiated 3T3-L1 cells, but it inhibited cell proliferation in differentiating 3T3-L1 cells. RAL increased ATGL, p-HSL, and HSL, and decreased perilipin-1 in differentiating 3T3-L1 cells. In addition, RAL reduced lipid droplet accumulation and increased free glycerol content in differentiated 3T3-L1 cells. RAL increased ATGL and HSL in differentiated 3T3-L1 cells. Also, RAL increased p-AMPK, PPARγ, UCP-1, and PGC-1α in differentiating 3T3-L1 cells. AMPK inhibition by Compound C attenuated RAL-mediated increase of ATGL, HSL, PPARγ, and UCP-1 in 3T3-L1 cells. Taken together, it is thought that RAL may inhibit lipid accumulation through lipolysis and thermogenesis via the activation of AMPK in adipocytes.

  • PDF

RADIO IDENTIFICATIONS IN THE NEP DEEP FIELD

  • White, Glenn J.;Soto, Laia Barrufet de;Pearson, Chris;Serjeant, Stephen;Lim, Tanya;Matsuhara, Hideo;Sirothia, S.K.;Pal, S.;Karouzos, Marios;AKARI-NEP Team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.231-233
    • /
    • 2017
  • We have imaged the AKARI Deep Field with the GMRT radio telescope at 610 MHz, detecting 1224 radio components, which are optically identified with 455 optical galaxies having a mean r' magnitude brighter of 22.5 (to a completeness limit of 25.4 mag), and an average redshift ~ 0.8.

THE RADIO-FAR INFRARED CORRELATION IN THE NEP DEEP FIELD

  • Barrufet, Laia;White, Glenn J.;Pearson, Chris;Serjeant, Stephen;Lim, Tanya;Matsuhara, Hideo;Oi, Nagisa;Karouzos, Marios;AKARI-NEP Team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.267-269
    • /
    • 2017
  • We report the results of a multi-wavelength study in the North Ecliptic Pole (NEP) deep field and examine the far infrared-radio correlation (FIRC) for high and low redshift objects. We have found a correlation between the GMRT data at 610 MHz and the Herschel data at $250{\mu}m$ that has been used to define a spectral index. This spectral index shows no evolution against redshift. As a result of the study, we show a radio colour-infrared diagram that can be used as a redshift indicator.

Induction of Autophagy by Rosa acicularis Leaves Extracts in RAW264.7 Cells (인가목(Rosa acicularis Lindl.) 잎 추출물의 대식세포에서 자가포식 유도활성)

  • Jeong Won Choi;Jin Boo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.36 no.4
    • /
    • pp.257-263
    • /
    • 2023
  • Autophagy contributes to enhancing the immune system (innate and adaptive immune system) against foreign pathogens. Autophagy of macrophages is used as a major indicator for developing vaccine adjuvants to increase the adaptive immune response. In this study, water extracts from Rosa acicularis leaves (RAL) increased the production of immunostimulatory mediators and phagocytic activity in RAW264.7 cells. RAL increased p62/SQSTM1 expression. Inhibition of TLR4, JNK, and PI3K/AKT blocked RAL-mediated increase of p62/SQSTM1. RAL activated JNK and PI3K/AKT signaling. RAL-mediated activations of JNK and PI3K/AKT signaling were reversed by TLR4 inhibition. Taken together, it is believed that RAL-mediated autophagy may be dependent on activating via TLR4-dependent activation of JNK and PI3K/AKT signaling in macrophages.

THE AGN POPULATION IN THE AKARI NEP DEEP FIELD

  • Soto, Laia Barrufet de;White, Glenn J.;Pearson, Chris;Serjeant, Stephen;Lim, Tanya;Matsuhara, Hideo;Oi, Nagisa;Karouzos, Marios;AKARI-NEP Team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.271-273
    • /
    • 2017
  • The AKARI North Ecliptic Pole Deep Field is a natural location to accomplish deep extragalactic surveys. It is supported by comprehensive ancillary data extending from radio to X-ray wavelengths, which have been used to classify radio sources as radio-loud and radio-quiet objects and to create a catalogue of Active Galactic Nuclei (AGN). This has been achieved by using a radio-optical classification and colour-colour diagrams rather than the more usual way based on spectroscopy Furthermore, we explore whether this technique can be extended by using a far-Infrared (FIR) colour-colour diagram which has been used to identify 268 high redshift candidates.