• Title/Summary/Keyword: Raingauge network

Search Result 13, Processing Time 0.017 seconds

Development of Distributed Rainfall-Runoff Model Using Multi-Directional Flow Allocation and Real-Time Updating Algorithm (II) - Application - (다방향 흐름 분배와 실시간 보정 알고리듬을 이용한 분포형 강우-유출 모형 개발(II) - 적용 -)

  • Kim, Keuk-Soo;Han, Kun-Yeun;Kim, Gwang-Seob
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.3
    • /
    • pp.259-270
    • /
    • 2009
  • The applicability of the developed distributed rainfall runoff model using a multi-directional flow allocation algorithm and a real-time updating algorithm was evaluated. The rainfall runoff processes were simulated for the events of the Andong dam basin and the Namgang dam basin using raingauge network data and weather radar rainfall data, respectively. Model parameters of the basins were estimated using previous storm event then those parameters were applied to a current storm event. The physical propriety of the multi-directional flow allocation algorithm for flow routing was validated by presenting the result of flow grouping for the Andong dam basin. Results demonstrated that the developed model has efficiency of simulation time with maintaining accuracy by applying the multi-directional flow allocation algorithm and it can obtain more accurate results by applying the real-time updating algorithm. In this study, we demonstrated the applicability of a distributed rainfall runoff model for the advanced basin-wide flood management.

Effect of R-Z Relationships Derived from Disdrometer Data on Radar Rainfall Estimation during the Heavy Rain Event on 5 July 2005 (2005년 7월 5일 폭우 사례 시 우적계 R-Z 관계식이 레이더 강우 추정에 미치는 영향)

  • Lee, GyuWon;Kwon, Byung-Huk
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.596-607
    • /
    • 2012
  • The R-Z relationship is one of important error factors to determine the accuracy of radar rainfall estimation. In this study, we have explored the effect of the R-Z relationships derived from disdrometer data in estimating the radar rainfall. The heavy rain event that produced flooding in St-Remi, Quebec, Canada has been occurred. We have tried to investigate the severity of rain for this event using high temporal (2.5 min) and spatial resolution ($1^{\circ}$ by 250 m) radar data obtained from the McGill S-band radar. Radar data revealed that the heavy rain cells pass directly over St-Remi while the coarse raingauge network was not sufficient to detect this rain event. The maximum 30 min (1 h) accumulation reaches about 39 (42) mm in St-Remi. During the rain event, the two disdrometers (POSS; Precipitation Occurrence Sensor System) were available: One used for the reflectivity calibration by comparing disdrometer Z and radar Z and the other for deriving disdrometric R-Z relationships. The result shows the significant improvement with the disdrometric reflectivity-dependent R-Z relationships against the climatological R-Z relationship. The bias in radar rain estimation is reduced from +12% to -2% and the root-mean squared error from 16 to 10% for daily accumulation. Using the estimated radar rainfall rate with disdrometric R-Z relationships, the flood event was well captured with proper timing and amount.

The Adjustment of Radar Precipitation Estimation Based on the Kriging Method (크리깅 방법을 기반으로 한 레이더 강우강도 오차 조정)

  • Kim, Kwang-Ho;Kim, Min-seong;Lee, Gyu-Won;Kang, Dong-Hwan;Kwon, Byung-Hyuk
    • Journal of the Korean earth science society
    • /
    • v.34 no.1
    • /
    • pp.13-27
    • /
    • 2013
  • Quantitative precipitation estimation (QPE) is one of the most important elements in meteorological and hydrological applications. In this study, we adjusted the QPE from an S-band weather radar based on co-kriging method using the geostatistical structure function of error distribution of radar rainrate. In order to estimate the accurate quantitative precipitation, the error of radar rainrate which is a primary variable of co-kriging was determined by the difference of rain rates from rain gauge and radar. Also, the gauge rainfield, a secondary variable of co-kriging is derived from the ordinary kriging based on raingauge network. The error distribution of radar rain rate was produced by co-kriging with the derived theoretical variogram determined by experimental variogram. The error of radar rain rate was then applied to the radar estimated precipitation field. Locally heavy rainfall case during 6-7 July 2009 is chosen to verify this study. Correlation between adjusted one-hour radar rainfall accumulation and rain gauge rainfall accumulation improved from 0.55 to 0.84 when compared to prior adjustment of radar error with the adjustment of root mean square error from 7.45 to 3.93 mm.