• Title/Summary/Keyword: Rainflow counting

Search Result 53, Processing Time 0.017 seconds

Establishment of Fatigue Life Evaluation and Management System for District Beating Pipes Considering Operating Temperature Transition Data (운전이력을 고려한 지역난방 열배관의 피로수명 평가 및 관리 체계 구축)

  • Chang Yoon-Suk;Jung Sung-Wook;Kim Hyeong-Keun;Choi Jae-Boong;Kim Sang-Ho;Kim Youn-Hong;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1235-1242
    • /
    • 2005
  • A district heating(DH) system supplies environmentally-friend heat and is appropriate for reduction of energy consumption and/or air pollutions. The DH transmission pipe, composed of supply and return pipes, has been used to transmit the heat and prevent heat loss during transportation. The two types of pipes are operated at a temperature of $75\~115^{\circ}C\;and\;40\~65^{\circ}C$, respectively, with an operating pressure of less than 1.568MPa. The objectives of this paper are to systematize data processing of transition temperature and investigate its effects on fatigue life of DH pipes. For the sake of this, about 5 millions temperature data were measured during one year at ten locations, and then available fatigue lift estimation schemes were examined and applied to quantify the specific thermal fatigue life of each pipe. As a result, a relational database management system as well as reliable fatigue lift evaluation procedures is established for Korean DH pipes. Also, since the prototypal evaluation results satisfied both cycle-based and stress-based fatigue criteria, those can be used as useful information in the future fer optimal design, operation and energy saving via setting of efficient condition and stabilization of water temperature.

Design of Individual Pitch Control and Fatigue Analysis of Wind Turbine (풍력발전시스템 개별피치제어설계 및 피로해석에 관한 연구)

  • Jeon, Gyeong Eon;No, Tae Soo;Kim, Guk Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Structural loading on a wind turbine is due to cyclic loads acting on the blades under turbulence and periodic wind field. The structural loading generates fatigue damage and fatigue failure of the wind turbine. The individual pitch control(IPC) is an efficient control method for reducing structural loading. In this paper, we present an IPC design method using Decentralized LQR(DLQR) and Disturbance accommodating control(DAC). DLQR is used for regulating rotor speed and DAC is used for canceling out disturbances. The performance of the proposed IPC is compared with CPC, which was designed with a gain-scheduled PI controller. We confirm the effect of fatigue load reduction with the use of damage equivalent load(DEL).

Bending Fatigue Life Assessment of Aged CWR using the Field Test (현장측정을 통한 노후레일의 휨 피로수명 평가)

  • Park, Yong-Gul;Sung, Deok-Yong;Park, Hong-Kee;Kong, Sun-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.317-325
    • /
    • 2008
  • As a result of recent research, it is reported that the periodic replacements criterion of rails is able to extend as grinding rail surface and using the continuous welded rail (CWR). This study evaluated correlation between conditions of track and load capacity of rail by analysing the dynamic response of track while the metro train is running. Also, it was converted the measured stress waveform into stress frequency histogram by the rain-flow counting methods, and then accumulated fatigue damage ratio and remaining service life of laid rail were calculated so as the apply the equivalence of stress to S-N curve of a new welded rail. Finally, this study suggests a revision of the periodic replacements criterion of CWR, which was based on accumulated passing tonnage, classified by the types and conditions of track system.