• Title/Summary/Keyword: Rainfall.

Search Result 6,218, Processing Time 0.027 seconds

Estimation of the Kinetic Energy of Raindrops for Hourly Rainfall Considering the Rainfall Particle Distribution (강우입자분포를 고려한 시강우의 강우에너지 산정 연구)

  • Kim, Seongwon;Jeong, Anchul;Lee, Giha;Jung, Kwansue
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.15-23
    • /
    • 2018
  • The occurrence of soil erosions in Korea is mostly driven by flowing water which has a close relationship with rainfalls. The soil eroded by rainfalls flows into and deposits in the river and it polluted the water resources and making the rivers become difficult to be managed. Recently, the frequency of heavy rainfall events that are more than 30 mm/hr has been increasing in Korea due to the influence of climate change, which creating a favourable condition for the occurrence of soil erosion within a short time. In this study, we proposed a method to estimate the distribution of rainfall intensity and to calculate the energy produced by a single rainfall event using the cumulative distribution function that take into account of the physical characteristics of rainfall. The raindrops kinetic energy estimated by the proposed method are compared with the measured data from the previous studies and it is noticed that the raindrops kinetic energy estimated by the rainfall intensity variation is very similar to the results concluded from the previous studies. In order to develop an equation for estimating rainfall kinetic energy, rainfall particle size data measured at a rainfall intensity of 0.254~152.4 mm/hr were used. The rainfall kinetic energy estimated by applying the cumulative distribution function tended to increase in the form of a power function in the relation of rainfall intensity. Based on the equation obtained from this relationship, the rainfall kinetic energy of 1~80 mm/hr rainfall intensity was estimated to be $0.03{\sim}48.26Jm^{-2}mm^{-1}$. Based on the relationship between rainfall intensity and rainfall energy, rainfall kinetic energy equation is proposed as a power function form and it is expected that it can be used in the design of short-term operated facility such as the sizing of sedimentation basin that requires prediction of soil loss by a single rainfall event.

Comparison of Chukwooki and Modern data Using Annual Maximum Rainfall Event Series (연최대 호우사상 계열을 이용한 측우기자료 및 현대자료의 비교)

  • Park, Minkyu;Yoo, Chulsang;Kim, Hyeon Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.137-147
    • /
    • 2010
  • In this study, Chukwooki and modern data were compared using annual maximum rainfall event series. Annual maximum series for specified rainfall duration in modern frequency analysis can not be constructed from Chukwooki data, so the concept of independent rainfall event is introduced to compare Chukwooki and modern data. Annual maximum rainfall event is determined by applying the bivariate exponential distribution and the parameters estimated annually are selected. The results using the annual parameter show that the hydrological meaning of the parameters is related to the variation of annual total rainfall amounts. For the whole independent rainfall events, the total rainfall and the rainfall intensity of Chukwooki data are greater than those of modern data, and rainfall duration of the two periods is similar. However modern annual maximum rainfall events show different characteristics that rainfall duration is much longer, rainfall intensity is similar and the total rainfall is greater than those of Chukwooki period. The increasing trend of rainfall duration and total rainfall of the modern annual rainfall events may be regarded as the one of components of the long-term cycle.

Analysis of Rainfall Runoff Delay Effect of Vegetation Unit-type LID System through Rainfall Simulator-based Probable Rainfall Recreation (인공강우기 기반 확률강우재현을 통한 식생유니트형 LID시스템의 우수유출지연 효과분석)

  • Kim, Tae-Han;Park, Jeong-Hyun;Choi, Boo-Hun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.115-124
    • /
    • 2019
  • In a climate change environment where heat damage and drought occur during a rainy season such as in 2018, a vegetation-based LID system that enables disaster prevention as well as environment improvement is suggested in lieu of an installation-type LID system that is limited to the prevention of floods. However, the quantification of its performance as against construction cost is limited. This study aims to present an experiment environment and evaluation method on quantitative performance, which is required in order to disseminate the vegetation-based LID system. To this end, a 3rd quartile huff time distribution mass curve was generated for 20-year frequency, 60-minute probable rainfall of 68mm/hr in Cheonan, and effluent was analyzed by recreating artificial rainfall. In order to assess the reliability of the rainfall event simulator, 10 repeat tests were conducted at one-minute intervals for 20 minutes with minimum rainfall intensity of 22.29mm/hr and the maximum rainfall intensity of 140.69mm/hr from the calculated probable rainfall. Effective rainfall as against influent flow was 21.83mm/hr (sd=0.17~1.36, n=20) on average at the minimum rainfall intensity and 142.27mm/hr (sd=1.02~3.25, n=20) on average at the maximum rainfall intensity. In artificial rainfall recreation experiments repeated for three times, the most frequent quartile was found to be the third quartile, which is around 40 minutes after beginning the experiment. The peak flow was observed 70 minutes after beginning the experiment in the experiment zone and after 50 minutes in the control zone. While the control zone recorded the maximum runoff intensity of 2.26mm/min(sd=0.25) 50 minutes after beginning the experiment, the experiment zone recorded the maximum runoff intensity of 0.77mm/min (sd=0.15) 70 minutes after beginning the experiment, which is 20 minutes later than the control zone. Also, the maximum runoff intensity of the experiment zone was 79.6% lower than that of the control zone, which confirmed that vegetation unit-type LID system had rainfall runoff reduction and delay effects. Based on the above findings, the reliability of a lab-level rainfall simulator for monitoring the vegetation-based LID system was reviewed, and maximum runoff intensity reduction and runoff time delay were confirmed. As a result, the study presented a performance evaluation method that can be applied to the pre-design of the vegetation-based LID system for rainfall events on a location before construction.

A Study on the Improvement of Huff's Method for Applying in Korea : II. Improvement of Huff's Method (Huff 강우시간분포방법의 개선방안 연구 : II. Huff 방법의 개선방안)

  • Jang Su-Hyung;Yoon Jae-Young;Yoon Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.9 s.170
    • /
    • pp.779-786
    • /
    • 2006
  • In this study, we propose a new method that utilizes rainfall data in and out of a basin, which is greater than 25.4mm for point rainfall or 12.7mm for areal mean rainfall respectively. From our analysis, most frequent quartile for point and areal mean rainfall were found to be the same in general for various rainfall duration intervals. From an evaluation of design rainfall per each rainfall duration distributed in time by the MOCT(Ministry of Construction and Transportation) version of Huff's method and this study, peak rainfall intensity by this study was found to be greater than the one by MOCT, but there were no consistent increase or decrease of this difference with rainfall durations. Using the distributed design rainfall per each duration by MOCT and this study, corresponding flood inflow hydrographs were simulated and compared each other. Contrary to the case of peak rainfall intensity, difference in peak flow by both methods per each rainfall duration started to increase from about 12-hr duration. Especially, the difference in peak flow was significant when critical rainfall duration was considered, and this trend was similar for peak flows of other rainfall durations. Therefore, the method proposed in this study is thought to be the effective procedure for the construction of dimensionless cumulative rainfall curve that is representative of a basin while considering time distribution characteristics for different rainfall durations.

Comparison of Annual Maximum Rainfall Series and Annual Maximum Independent Rainfall Event Series (연최대치 계열과 연최대치 독립 호우사상 계열의 비교)

  • Yoo, Chul-Sang;Park, Cheol-Soon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.431-444
    • /
    • 2012
  • This study investigated the differences between annual maximum series and annual maximum independent rainfall event series with relatively short and long rainfall durations. Annual maximum independent rainfall events were selected by applying various IETDs and thresholds to the hourly rainfall data in Seoul for the duration from 1961 to 2010. Annual maximum independent rainfall event series decided were then compared with the conventional annual maximum series. Summarizing the results is as follows. First, the effect of IETD and threshold was not beyond the expected level. For example, as the IETD increases, the frequencies of independent rainfall events decreased similarly in their rate for both with short and long durations. However, as the threshold increases, the frequency of those with rather long durations decreased much higher. Second, The mean rainfall intensity of the independent rainfall events was found to remain constant regardless of their duration. This indicates that the annual maximum rainfall intensity could be found in a rainfall event with longer durations. Lastly, the difference between the annual maximum rainfall series and the annual maximum independent rainfall event series with rather short rainfall durations was found significantly large, which decreases with longer durations. This result indicates that the conventional data analysis method, especially for small basins with short concentration time, could lead an unrealistic design rainfall with little possibility of occurrence.

Spatial-Temporal Interpolation of Rainfall Using Rain Gauge and Radar (강우계와 레이더를 이용한 강우의 시공간적인 활용)

  • Hong, Seung-Jin;Kim, Byung-Sik;Hahm, Chang-Hahk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.37-48
    • /
    • 2010
  • The purpose of this paper is to evaluate how the rainfall field effect on a runoff simulation using grid radar rainfall data and ground gauge rainfall. The Gwangdeoksan radar and ground-gauge rainfall data were used to estimate a spatial rainfall field, and a hydrologic model was used to evaluate whether the rainfall fields created by each method reproduced a realistically valid spatial and temporal distribution. Pilot basin in this paper was the Naerin stream located in Inje-gun, Gangwondo, 250m grid scale digital elevation data, land cover maps, and soil maps were used to estimate geological parameters for the hydrologic model. For the rainfall input data, quantitative precipitation estimation(QPE), adjusted radar rainfall, and gauge rainfall was used, and then compared with the observed runoff by inputting it into a $Vflo^{TM}$ model. As a result of the simulation, the quantitative precipitation estimation and the ground rainfall were underestimated when compared to the observed runoff, while the adjusted radar rainfall showed a similar runoff simulation with the actual observed runoff. From these results, we suggested that when weather radars and ground rainfall data are combined, they have a greater hydrological usability as input data for a hydrological model than when just radar rainfall or ground rainfall is used separately.

Development and validation of poisson cluster stochastic rainfall generation web application across South Korea (포아송 클러스터 가상강우생성 웹 어플리케이션 개발 및 검증 - 우리나라에 대해서)

  • Han, Jaemoon;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.335-346
    • /
    • 2016
  • This study produced the parameter maps of the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) stochastic rainfall generation model across South Korea and developed and validated the web application that automates the process of rainfall generation based on the produced parameter maps. To achieve this purpose, three deferent sets of parameters of the MBLRP model were estimated at 62 ground gage locations in South Korea depending on the distinct purpose of the synthetic rainfall time series to be used in hydrologic modeling (i.e. flood modeling, runoff modeling, and general purpose). The estimated parameters were spatially interpolated using the Ordinary Kriging method to produce the parameter maps across South Korea. Then, a web application has been developed to automate the process of synthetic rainfall generation based on the parameter maps. For validation, the synthetic rainfall time series has been created using the web application and then various rainfall statistics including mean, variance, autocorrelation, probability of zero rainfall, extreme rainfall, extreme flood, and runoff depth were calculated, then these values were compared to the ones based on the observed rainfall time series. The mean, variance, autocorrelation, and probability of zero rainfall of the synthetic rainfall were similar to the ones of the observed rainfall while the extreme rainfall and extreme flood value were smaller than the ones derived from the observed rainfall by the degree of 16%-40%. Lastly, the web application developed in this study automates the entire process of synthetic rainfall generation, so we expect the application to be used in a variety of hydrologic analysis needing rainfall data.

Effects of the rainfall-rewetted paddy on the quality of the milledrice (벼의 재흡습이 도정미의 품질에 미치는 영향)

  • 정창주;김용운;강화석
    • Journal of Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.76-86
    • /
    • 1979
  • This study was conducted to find out the effects of rainfall occurring during the paddy sun-during process of traditional paddy harvesting operations on the quality of milld rice. Rice varieties used for the experiment were MINEHIJARI variety a japonica and SUWEON 264 vareity , a sister-line of TONG-IL . Sun-drying days after the paddy cutting, times of storm occurrance during sun-drying period, and storm duration were treated as variables. The results is summarised as follows : 1. Brown rice recovery exposed to rainfall during the sun-druing period were ranged 81.6-82.1% and 79.4-80.2% for MINEHIKARI and SUWEON 264 varieties, respectively. which showed negligible effect by rainfall. 2. Milling recovery of MINEHIKARI variety was not affected by storm duration but by the by the sun-drying days after cutting as the sun-drying days increased to eight and four days when the variety met the rainfall one and two times, respectively. The range of milling recoveries of MINEHIKARI variety were 75.18-74.07% and 75.24-73.46% as the variety met the rainfall one and two times, respectively, and it were estimated that up to 0.9% and 1.5% of milling recovery would be reduced by one and two times of rainfall during sun-drying period. 3. The milling recovery of SUWEON 264 variety was affected only by the increase of drying days after cutting when it met one time of rainfall during the sun-drying period, while it was begun to reduce by the storm duration more than 11hours as the drying paddy met two times of rainfall. The milling reveries of the paddy met one and two times of rainfall were ranged 74.24-73.21% and 74.02-72.36% which were estimated to be reduced up to 0.9 % and 1.8% by the increase of the drying days after cutting and storm duration , respectively. 4. The head rice recovery of MINEHIKARI rice variety showed notable decrease as the drying days after cutting increased, and also it was greatly reduced even by the five hours of storm duration when one time of rainfall occurred but it was not affected by storm duration when the rainfall occurred two times. Head rice recoveries of MINEHIKARI met one and two times of rainfall during the sun-drying period were 65. 15 -40.85% and 61.86 - 30.03 %, which showed terrible reduction as much as up to 25% and 35% compared to that which did not met rainfall during the sun-drying process. 5. Head rice recovery or SUWEON 264 variety was very much reduced as the sum-drying days after cutting increased. Storm duration less than five hours during the sun-drying process did not affect on the decrease of head rice recovery when the variety was exposed to one time of rainfall, while storm duration affected considerably on the reduction of head rice recovery of SUWEON 264 variety exposed to two times of rainfall. The range of head rice recovery, 56.43 - 33.94% and 51.28 - 21.03% , for the paddy exposed to rainfall one and two times were evaluated that up to 24% and 37% of reduction in head rice recovery would be brought about compared to the head rice recovery of the sundriedpaddy that did not met the rainfall.

  • PDF

Effects of the rainfall-rewetted paddy on the quality of the milledrice (벼의 재흡습이 도정미의 품질에 미치는 영향)

  • Chung, Chang-Joo;Jeon, Yong-Woon
    • Journal of Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.75-75
    • /
    • 1979
  • This study was conducted to find out the effects of rainfall occurring during the paddy sun-during process of traditional paddy harvesting operations on the quality of milld rice. Rice varieties used for the experiment were MINEHIJARI variety a japonica and SUWEON 264 vareity , a sister-line of TONG-IL . Sun-drying days after the paddy cutting, times of storm occurrance during sun-drying period, and storm duration were treated as variables. The results is summarised as follows : 1. Brown rice recovery exposed to rainfall during the sun-druing period were ranged 81.6-82.1% and 79.4-80.2% for MINEHIKARI and SUWEON 264 varieties, respectively. which showed negligible effect by rainfall. 2. Milling recovery of MINEHIKARI variety was not affected by storm duration but by the by the sun-drying days after cutting as the sun-drying days increased to eight and four days when the variety met the rainfall one and two times, respectively. The range of milling recoveries of MINEHIKARI variety were 75.18-74.07% and 75.24-73.46% as the variety met the rainfall one and two times, respectively, and it were estimated that up to 0.9% and 1.5% of milling recovery would be reduced by one and two times of rainfall during sun-drying period. 3. The milling recovery of SUWEON 264 variety was affected only by the increase of drying days after cutting when it met one time of rainfall during the sun-drying period, while it was begun to reduce by the storm duration more than 11hours as the drying paddy met two times of rainfall. The milling reveries of the paddy met one and two times of rainfall were ranged 74.24-73.21% and 74.02-72.36% which were estimated to be reduced up to 0.9 % and 1.8% by the increase of the drying days after cutting and storm duration , respectively. 4. The head rice recovery of MINEHIKARI rice variety showed notable decrease as the drying days after cutting increased, and also it was greatly reduced even by the five hours of storm duration when one time of rainfall occurred but it was not affected by storm duration when the rainfall occurred two times. Head rice recoveries of MINEHIKARI met one and two times of rainfall during the sun-drying period were 65. 15 -40.85% and 61.86 - 30.03 %, which showed terrible reduction as much as up to 25% and 35% compared to that which did not met rainfall during the sun-drying process. 5. Head rice recovery or SUWEON 264 variety was very much reduced as the sum-drying days after cutting increased. Storm duration less than five hours during the sun-drying process did not affect on the decrease of head rice recovery when the variety was exposed to one time of rainfall, while storm duration affected considerably on the reduction of head rice recovery of SUWEON 264 variety exposed to two times of rainfall. The range of head rice recovery, 56.43 - 33.94% and 51.28 - 21.03% , for the paddy exposed to rainfall one and two times were evaluated that up to 24% and 37% of reduction in head rice recovery would be brought about compared to the head rice recovery of the sundriedpaddy that did not met the rainfall.

Characteristics of Rainfall and Landslides according to the Geological Condition (지질조건에 따른 강우와 산사태의 특성분석)

  • Kim Kyeong-Su;Song Young-Suk;Cho Yong-Chan;Kim Won-Young;Jeong Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.16 no.2 s.48
    • /
    • pp.201-214
    • /
    • 2006
  • To study the relationship between rainfall conditions and landslides according to a geological condition in land-slides areas such asJangheung Kyounggi, Sangju and Pohang Kyoungbuk, the data of rainfall and landslides are investigated and analyzed. Many landslides occurred at these areas because of the heavy rainfall in two or four days of the summer 1998. The data of rainfall are collected in observatories within a 50km radius from landslides occurrence areas, and the data of landslides are investigated directly in landslides areas. The data of rainfall are the accumulative rainfall and the rainfall intensity, and the data of landslides are the occurrence frequency considering the geological condition. These data are analyzed statistically to know the relationship the rainfall and landslides. The landslides are concentrated in the heavy rainfall area from the analysis of these data. It knows that the land-slides are triggered by the heavy rainfall. Meanwhile, the rainfall factors such as the accumulative rainfall, the rain-fall intensity and the dropping time are different in each landslides area, and the shape and frequency of landslides are different respectively. The landslides have occurred in the area of high accumulative rainfall, while the land-slides have not occurred around that area. Therefore, the rainfall is very important factor induced by the landslides, and the accumulative rainfall is really related to the frequency of landslides.