Kim, Seongwon;Jeong, Anchul;Lee, Giha;Jung, Kwansue
Journal of the Korean GEO-environmental Society
/
v.19
no.12
/
pp.15-23
/
2018
The occurrence of soil erosions in Korea is mostly driven by flowing water which has a close relationship with rainfalls. The soil eroded by rainfalls flows into and deposits in the river and it polluted the water resources and making the rivers become difficult to be managed. Recently, the frequency of heavy rainfall events that are more than 30 mm/hr has been increasing in Korea due to the influence of climate change, which creating a favourable condition for the occurrence of soil erosion within a short time. In this study, we proposed a method to estimate the distribution of rainfall intensity and to calculate the energy produced by a single rainfall event using the cumulative distribution function that take into account of the physical characteristics of rainfall. The raindrops kinetic energy estimated by the proposed method are compared with the measured data from the previous studies and it is noticed that the raindrops kinetic energy estimated by the rainfall intensity variation is very similar to the results concluded from the previous studies. In order to develop an equation for estimating rainfall kinetic energy, rainfall particle size data measured at a rainfall intensity of 0.254~152.4 mm/hr were used. The rainfall kinetic energy estimated by applying the cumulative distribution function tended to increase in the form of a power function in the relation of rainfall intensity. Based on the equation obtained from this relationship, the rainfall kinetic energy of 1~80 mm/hr rainfall intensity was estimated to be $0.03{\sim}48.26Jm^{-2}mm^{-1}$. Based on the relationship between rainfall intensity and rainfall energy, rainfall kinetic energy equation is proposed as a power function form and it is expected that it can be used in the design of short-term operated facility such as the sizing of sedimentation basin that requires prediction of soil loss by a single rainfall event.
KSCE Journal of Civil and Environmental Engineering Research
/
v.30
no.2B
/
pp.137-147
/
2010
In this study, Chukwooki and modern data were compared using annual maximum rainfall event series. Annual maximum series for specified rainfall duration in modern frequency analysis can not be constructed from Chukwooki data, so the concept of independent rainfall event is introduced to compare Chukwooki and modern data. Annual maximum rainfall event is determined by applying the bivariate exponential distribution and the parameters estimated annually are selected. The results using the annual parameter show that the hydrological meaning of the parameters is related to the variation of annual total rainfall amounts. For the whole independent rainfall events, the total rainfall and the rainfall intensity of Chukwooki data are greater than those of modern data, and rainfall duration of the two periods is similar. However modern annual maximum rainfall events show different characteristics that rainfall duration is much longer, rainfall intensity is similar and the total rainfall is greater than those of Chukwooki period. The increasing trend of rainfall duration and total rainfall of the modern annual rainfall events may be regarded as the one of components of the long-term cycle.
Journal of the Korean Society of Environmental Restoration Technology
/
v.22
no.6
/
pp.115-124
/
2019
In a climate change environment where heat damage and drought occur during a rainy season such as in 2018, a vegetation-based LID system that enables disaster prevention as well as environment improvement is suggested in lieu of an installation-type LID system that is limited to the prevention of floods. However, the quantification of its performance as against construction cost is limited. This study aims to present an experiment environment and evaluation method on quantitative performance, which is required in order to disseminate the vegetation-based LID system. To this end, a 3rd quartile huff time distribution mass curve was generated for 20-year frequency, 60-minute probable rainfall of 68mm/hr in Cheonan, and effluent was analyzed by recreating artificial rainfall. In order to assess the reliability of the rainfall event simulator, 10 repeat tests were conducted at one-minute intervals for 20 minutes with minimum rainfall intensity of 22.29mm/hr and the maximum rainfall intensity of 140.69mm/hr from the calculated probable rainfall. Effective rainfall as against influent flow was 21.83mm/hr (sd=0.17~1.36, n=20) on average at the minimum rainfall intensity and 142.27mm/hr (sd=1.02~3.25, n=20) on average at the maximum rainfall intensity. In artificial rainfall recreation experiments repeated for three times, the most frequent quartile was found to be the third quartile, which is around 40 minutes after beginning the experiment. The peak flow was observed 70 minutes after beginning the experiment in the experiment zone and after 50 minutes in the control zone. While the control zone recorded the maximum runoff intensity of 2.26mm/min(sd=0.25) 50 minutes after beginning the experiment, the experiment zone recorded the maximum runoff intensity of 0.77mm/min (sd=0.15) 70 minutes after beginning the experiment, which is 20 minutes later than the control zone. Also, the maximum runoff intensity of the experiment zone was 79.6% lower than that of the control zone, which confirmed that vegetation unit-type LID system had rainfall runoff reduction and delay effects. Based on the above findings, the reliability of a lab-level rainfall simulator for monitoring the vegetation-based LID system was reviewed, and maximum runoff intensity reduction and runoff time delay were confirmed. As a result, the study presented a performance evaluation method that can be applied to the pre-design of the vegetation-based LID system for rainfall events on a location before construction.
In this study, we propose a new method that utilizes rainfall data in and out of a basin, which is greater than 25.4mm for point rainfall or 12.7mm for areal mean rainfall respectively. From our analysis, most frequent quartile for point and areal mean rainfall were found to be the same in general for various rainfall duration intervals. From an evaluation of design rainfall per each rainfall duration distributed in time by the MOCT(Ministry of Construction and Transportation) version of Huff's method and this study, peak rainfall intensity by this study was found to be greater than the one by MOCT, but there were no consistent increase or decrease of this difference with rainfall durations. Using the distributed design rainfall per each duration by MOCT and this study, corresponding flood inflow hydrographs were simulated and compared each other. Contrary to the case of peak rainfall intensity, difference in peak flow by both methods per each rainfall duration started to increase from about 12-hr duration. Especially, the difference in peak flow was significant when critical rainfall duration was considered, and this trend was similar for peak flows of other rainfall durations. Therefore, the method proposed in this study is thought to be the effective procedure for the construction of dimensionless cumulative rainfall curve that is representative of a basin while considering time distribution characteristics for different rainfall durations.
This study investigated the differences between annual maximum series and annual maximum independent rainfall event series with relatively short and long rainfall durations. Annual maximum independent rainfall events were selected by applying various IETDs and thresholds to the hourly rainfall data in Seoul for the duration from 1961 to 2010. Annual maximum independent rainfall event series decided were then compared with the conventional annual maximum series. Summarizing the results is as follows. First, the effect of IETD and threshold was not beyond the expected level. For example, as the IETD increases, the frequencies of independent rainfall events decreased similarly in their rate for both with short and long durations. However, as the threshold increases, the frequency of those with rather long durations decreased much higher. Second, The mean rainfall intensity of the independent rainfall events was found to remain constant regardless of their duration. This indicates that the annual maximum rainfall intensity could be found in a rainfall event with longer durations. Lastly, the difference between the annual maximum rainfall series and the annual maximum independent rainfall event series with rather short rainfall durations was found significantly large, which decreases with longer durations. This result indicates that the conventional data analysis method, especially for small basins with short concentration time, could lead an unrealistic design rainfall with little possibility of occurrence.
Journal of Korean Society for Geospatial Information Science
/
v.18
no.3
/
pp.37-48
/
2010
The purpose of this paper is to evaluate how the rainfall field effect on a runoff simulation using grid radar rainfall data and ground gauge rainfall. The Gwangdeoksan radar and ground-gauge rainfall data were used to estimate a spatial rainfall field, and a hydrologic model was used to evaluate whether the rainfall fields created by each method reproduced a realistically valid spatial and temporal distribution. Pilot basin in this paper was the Naerin stream located in Inje-gun, Gangwondo, 250m grid scale digital elevation data, land cover maps, and soil maps were used to estimate geological parameters for the hydrologic model. For the rainfall input data, quantitative precipitation estimation(QPE), adjusted radar rainfall, and gauge rainfall was used, and then compared with the observed runoff by inputting it into a $Vflo^{TM}$ model. As a result of the simulation, the quantitative precipitation estimation and the ground rainfall were underestimated when compared to the observed runoff, while the adjusted radar rainfall showed a similar runoff simulation with the actual observed runoff. From these results, we suggested that when weather radars and ground rainfall data are combined, they have a greater hydrological usability as input data for a hydrological model than when just radar rainfall or ground rainfall is used separately.
This study produced the parameter maps of the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) stochastic rainfall generation model across South Korea and developed and validated the web application that automates the process of rainfall generation based on the produced parameter maps. To achieve this purpose, three deferent sets of parameters of the MBLRP model were estimated at 62 ground gage locations in South Korea depending on the distinct purpose of the synthetic rainfall time series to be used in hydrologic modeling (i.e. flood modeling, runoff modeling, and general purpose). The estimated parameters were spatially interpolated using the Ordinary Kriging method to produce the parameter maps across South Korea. Then, a web application has been developed to automate the process of synthetic rainfall generation based on the parameter maps. For validation, the synthetic rainfall time series has been created using the web application and then various rainfall statistics including mean, variance, autocorrelation, probability of zero rainfall, extreme rainfall, extreme flood, and runoff depth were calculated, then these values were compared to the ones based on the observed rainfall time series. The mean, variance, autocorrelation, and probability of zero rainfall of the synthetic rainfall were similar to the ones of the observed rainfall while the extreme rainfall and extreme flood value were smaller than the ones derived from the observed rainfall by the degree of 16%-40%. Lastly, the web application developed in this study automates the entire process of synthetic rainfall generation, so we expect the application to be used in a variety of hydrologic analysis needing rainfall data.
This study was conducted to find out the effects of rainfall occurring during the paddy sun-during process of traditional paddy harvesting operations on the quality of milld rice. Rice varieties used for the experiment were MINEHIJARI variety a japonica and SUWEON 264 vareity , a sister-line of TONG-IL . Sun-drying days after the paddy cutting, times of storm occurrance during sun-drying period, and storm duration were treated as variables. The results is summarised as follows : 1. Brown rice recovery exposed to rainfall during the sun-druing period were ranged 81.6-82.1% and 79.4-80.2% for MINEHIKARI and SUWEON 264 varieties, respectively. which showed negligible effect by rainfall. 2. Milling recovery of MINEHIKARI variety was not affected by storm duration but by the by the sun-drying days after cutting as the sun-drying days increased to eight and four days when the variety met the rainfall one and two times, respectively. The range of milling recoveries of MINEHIKARI variety were 75.18-74.07% and 75.24-73.46% as the variety met the rainfall one and two times, respectively, and it were estimated that up to 0.9% and 1.5% of milling recovery would be reduced by one and two times of rainfall during sun-drying period. 3. The milling recovery of SUWEON 264 variety was affected only by the increase of drying days after cutting when it met one time of rainfall during the sun-drying period, while it was begun to reduce by the storm duration more than 11hours as the drying paddy met two times of rainfall. The milling reveries of the paddy met one and two times of rainfall were ranged 74.24-73.21% and 74.02-72.36% which were estimated to be reduced up to 0.9 % and 1.8% by the increase of the drying days after cutting and storm duration , respectively. 4. The head rice recovery of MINEHIKARI rice variety showed notable decrease as the drying days after cutting increased, and also it was greatly reduced even by the five hours of storm duration when one time of rainfall occurred but it was not affected by storm duration when the rainfall occurred two times. Head rice recoveries of MINEHIKARI met one and two times of rainfall during the sun-drying period were 65. 15 -40.85% and 61.86 - 30.03 %, which showed terrible reduction as much as up to 25% and 35% compared to that which did not met rainfall during the sun-drying process. 5. Head rice recovery or SUWEON 264 variety was very much reduced as the sum-drying days after cutting increased. Storm duration less than five hours during the sun-drying process did not affect on the decrease of head rice recovery when the variety was exposed to one time of rainfall, while storm duration affected considerably on the reduction of head rice recovery of SUWEON 264 variety exposed to two times of rainfall. The range of head rice recovery, 56.43 - 33.94% and 51.28 - 21.03% , for the paddy exposed to rainfall one and two times were evaluated that up to 24% and 37% of reduction in head rice recovery would be brought about compared to the head rice recovery of the sundriedpaddy that did not met the rainfall.
This study was conducted to find out the effects of rainfall occurring during the paddy sun-during process of traditional paddy harvesting operations on the quality of milld rice. Rice varieties used for the experiment were MINEHIJARI variety a japonica and SUWEON 264 vareity , a sister-line of TONG-IL . Sun-drying days after the paddy cutting, times of storm occurrance during sun-drying period, and storm duration were treated as variables. The results is summarised as follows : 1. Brown rice recovery exposed to rainfall during the sun-druing period were ranged 81.6-82.1% and 79.4-80.2% for MINEHIKARI and SUWEON 264 varieties, respectively. which showed negligible effect by rainfall. 2. Milling recovery of MINEHIKARI variety was not affected by storm duration but by the by the sun-drying days after cutting as the sun-drying days increased to eight and four days when the variety met the rainfall one and two times, respectively. The range of milling recoveries of MINEHIKARI variety were 75.18-74.07% and 75.24-73.46% as the variety met the rainfall one and two times, respectively, and it were estimated that up to 0.9% and 1.5% of milling recovery would be reduced by one and two times of rainfall during sun-drying period. 3. The milling recovery of SUWEON 264 variety was affected only by the increase of drying days after cutting when it met one time of rainfall during the sun-drying period, while it was begun to reduce by the storm duration more than 11hours as the drying paddy met two times of rainfall. The milling reveries of the paddy met one and two times of rainfall were ranged 74.24-73.21% and 74.02-72.36% which were estimated to be reduced up to 0.9 % and 1.8% by the increase of the drying days after cutting and storm duration , respectively. 4. The head rice recovery of MINEHIKARI rice variety showed notable decrease as the drying days after cutting increased, and also it was greatly reduced even by the five hours of storm duration when one time of rainfall occurred but it was not affected by storm duration when the rainfall occurred two times. Head rice recoveries of MINEHIKARI met one and two times of rainfall during the sun-drying period were 65. 15 -40.85% and 61.86 - 30.03 %, which showed terrible reduction as much as up to 25% and 35% compared to that which did not met rainfall during the sun-drying process. 5. Head rice recovery or SUWEON 264 variety was very much reduced as the sum-drying days after cutting increased. Storm duration less than five hours during the sun-drying process did not affect on the decrease of head rice recovery when the variety was exposed to one time of rainfall, while storm duration affected considerably on the reduction of head rice recovery of SUWEON 264 variety exposed to two times of rainfall. The range of head rice recovery, 56.43 - 33.94% and 51.28 - 21.03% , for the paddy exposed to rainfall one and two times were evaluated that up to 24% and 37% of reduction in head rice recovery would be brought about compared to the head rice recovery of the sundriedpaddy that did not met the rainfall.
Kim Kyeong-Su;Song Young-Suk;Cho Yong-Chan;Kim Won-Young;Jeong Gyo-Cheol
The Journal of Engineering Geology
/
v.16
no.2
s.48
/
pp.201-214
/
2006
To study the relationship between rainfall conditions and landslides according to a geological condition in land-slides areas such asJangheung Kyounggi, Sangju and Pohang Kyoungbuk, the data of rainfall and landslides are investigated and analyzed. Many landslides occurred at these areas because of the heavy rainfall in two or four days of the summer 1998. The data of rainfall are collected in observatories within a 50km radius from landslides occurrence areas, and the data of landslides are investigated directly in landslides areas. The data of rainfall are the accumulative rainfall and the rainfall intensity, and the data of landslides are the occurrence frequency considering the geological condition. These data are analyzed statistically to know the relationship the rainfall and landslides. The landslides are concentrated in the heavy rainfall area from the analysis of these data. It knows that the land-slides are triggered by the heavy rainfall. Meanwhile, the rainfall factors such as the accumulative rainfall, the rain-fall intensity and the dropping time are different in each landslides area, and the shape and frequency of landslides are different respectively. The landslides have occurred in the area of high accumulative rainfall, while the land-slides have not occurred around that area. Therefore, the rainfall is very important factor induced by the landslides, and the accumulative rainfall is really related to the frequency of landslides.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.