• Title/Summary/Keyword: Rainfall-Runoff simulation

Search Result 343, Processing Time 0.026 seconds

Set up Reduction Goals of Combined Sewer Overflow Pollutant Load Using Long-Term Rainfall-Runoff Model Simulation (장기간 강우-유출 모의를 통한 합류식하수관로시스템의 월류부하량 저감목표 설정 연구)

  • Lee, Gunyoung;Na, Yongun;Ryu, Jaena;Oh, Jeill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.785-794
    • /
    • 2013
  • Combined sewer overflows during rainfall events contain sewer sediments and surface pollutants. This can cause significant chemical, physical and biological problems to receiving watershed. However, there are no method that can commonly apply to decide criteria for controlling the pollutant load. In this study, it sets up the reduction goals of combined sewer overflow through long-term simulation using the rainfall-runoff model. From a review of domestic and foreign management standard of combined sewer overflow for this, it makes decision that 60% (phase 1), 85% (phase 2) of total pollutant load and frequency per year for reduction goals is more proper. Also, the result of analyzing long-term simulation (minimum 10 years) applied to research basin indicates that reduction goals of BOD pollutant load are 1,123 kg (phase 1) and 2,374 kg (phase 2), and overflow volumes for research objective achievement are $11,685m^3$ (phase 1) and $24,701m^3$ (phase 2).

The Development of Coupled SWAT-SWMM Model (II) Model Characteristics and Evaluation (SWAT-SWMM 결합모형의 개발 (II) 모형의 특징 및 평가)

  • Kim, Nam-Won;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.7
    • /
    • pp.599-612
    • /
    • 2004
  • The continuous long-term rainfall-runoff simulation model SWAT has the advantage of being able to account for various land use, however, SWAT lacks the capability of simulating the drainage characteristics of urban area. On the other hand, SWMM, which is the most popular model for runoff analysis of urban watershed, has the advantage of being capable of considering surface and drainage characteristics in urban area, but SWMM cannot easily account for land use other than urban area within a watershed. In this study, SWAT-SWMM model, which builds on the strengths of SWAT and SWMM, has been applied to the Osan River Watershed which is a tributary watershed to the Gyung-Ahn River. From the application, the results from coupled SWAT-SWMM model has been compared to the ones from SWAT for each hydrologic component such as evapotranspiration, surface runoff, groundwater flow, and watershed and channel discharge, and the runoff characteristics of two models for each hydrologic component has been discussed.

HSPF and SWAT Modelling for Identifying Runoff Reduction Effect of Nonpoint Source Pollution by Rice Straw Mulching on Upland Crops (볏짚 피복에 의한 밭 비점오염원 유출저감효과 분석을 위한 HSPF와 SWAT 모델링)

  • Jung, Chung Gil;Ahn, So Ra;Kim, Seong Joon;Yang, Hee Jeong;Lee, Hyung Jin;Park, Geun Ae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.47-57
    • /
    • 2013
  • This study is to assess the reduction of non-point source pollution loads for rice straw mulching of upland crop cultivation at a watershed scale. For Byulmi-cheon watershed (1.21 $km^2$) located in the upstream of Gyeongan-cheon, the HSPF (Hydrological Simulation Program-Fortran) and SWAT (Soil and Water Assesment Tool), physically based distributed hydrological models were applied. Before evaluation, the model was calibrated and validated using 9 rainfall events. The Nash-Sutcliffe model efficiency (NSE) for streamflow using the HSPF was 0.62~0.76 and the determination coefficient ($R^2$) for water quality (sediment, total nitrogen T-N, and total phosphorus T-P) were 0.72, 0.62, and 0.63 respectively. The NSE for streamflow using the SWAT were 0.43~0.81 and the $R^2$ for water quality (sediment, T-N, and T-P) were 0.54, 0.87, and 0.64 respectively. From the field experiment of 16 rainfall events, the rice straw cover condition reduced surface runoff average 10.0 % compared to normal surface condition. By handling infiltration capacity (INFILT) in HSPF model, the value of 16.0 mm/hr was found to reduce about 10.0 % reduction of surface runoff. For this condition, the reduction effect of sediment, T-N, and T-P loads were 87.2, 28.5, and 85.1 % respectively. By handling soil hydraulic conductivity (SOL_K) in SWAT model, the value of 111.2 mm/hr was found to reduce about 10.0 point reduction of surface runoff. For this condition, the reduction effect of sediment, T-N, and T-P loads were 80.0, 83.2, and 78.7 % respectively. The rice straw surface covering was effective for removing surface runoff dependent loads such as sediment and T-P.

A Study of Optimal-CSOs by Continuous Rainfall/Runoff Simulation Techniques (연속 강우-유출 모의기법을 이용한 최적 CSOs 산정에 관한 연구)

  • Jo, Deok Jun;Kim, Myoung Su;Lee, Jung Ho;Kim, Joong Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1068-1074
    • /
    • 2006
  • For receiving water quality protection a control systems of urban drainage for CSOs reduction is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as storm-water detention storage is highly dependant on the temporal variability of storage capacity available as well as the infiltration capacity of soil and recovery of depression storage. For the continuous long-term analysis of urban drainage system this study used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model has evolved that offers much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. Runoff characteristics manifested the unique characteristics of the subject area with the infiltration capacity of soil and recovery of depression storage and was examined appropriately by sensitivity analysis. This study presented the average annual CSOs, number of CSOs and event mean CSOs for the decision of storage volume.

Forecasting of Runoff Hydrograph Using Neural Network Algorithms (신경망 알고리즘을 적용한 유출수문곡선의 예측)

  • An, Sang-Jin;Jeon, Gye-Won;Kim, Gwang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.4
    • /
    • pp.505-515
    • /
    • 2000
  • THe purpose of this study is to forecast of runoff hydrographs according to rainfall event in a stream. The neural network theory as a hydrologic blackbox model is used to solve hydrological problems. The Back-Propagation(BP) algorithm by the Levenberg-Marquardt(LM) techniques and Radial Basis Function(RBF) network in Neural Network(NN) models are used. Runoff hydrograph is forecasted in Bocheongstream basin which is a IHP the representative basin. The possibility of a simulation for runoff hydrographs about unlearned stations is considered. The results show that NN models are performed to effective learning for rainfall-runoff process of hydrologic system which involves a complexity and nonliner relationships. The RBF networks consist of 2 learning steps. The first step is an unsupervised learning in hidden layer and the next step is a supervised learning in output layer. Therefore, the RBF networks could provide rather time saved in the learning step than the BP algorithm. The peak discharge both BP algorithm and RBF network model in the estimation of an unlearned are a is trended to observed values.

  • PDF

Comparison of rainfall-runoff performance based on various gridded precipitation datasets in the Mekong River basin (메콩강 유역의 격자형 강수 자료에 의한 강우-유출 모의 성능 비교·분석)

  • Kim, Younghun;Le, Xuan-Hien;Jung, Sungho;Yeon, Minho;Lee, Gihae
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.75-89
    • /
    • 2023
  • As the Mekong River basin is a nationally shared river, it is difficult to collect precipitation data, and the quantitative and qualitative quality of the data sets differs from country to country, which may increase the uncertainty of hydrological analysis results. Recently, with the development of remote sensing technology, it has become easier to obtain grid-based precipitation products(GPPs), and various hydrological analysis studies have been conducted in unmeasured or large watersheds using GPPs. In this study, rainfall-runoff simulation in the Mekong River basin was conducted using the SWAT model, which is a quasi-distribution model with three satellite GPPs (TRMM, GSMaP, PERSIANN-CDR) and two GPPs (APHRODITE, GPCC). Four water level stations, Luang Prabang, Pakse, Stung Treng, and Kratie, which are major outlets of the main Mekong River, were selected, and the parameters of the SWAT model were calibrated using APHRODITE as an observation value for the period from 2001 to 2011 and runoff simulations were verified for the period form 2012 to 2013. In addition, using the ConvAE, a convolutional neural network model, spatio-temporal correction of original satellite precipitation products was performed, and rainfall-runoff performances were compared before and after correction of satellite precipitation products. The original satellite precipitation products and GPCC showed a quantitatively under- or over-estimated or spatially very different pattern compared to APHPRODITE, whereas, in the case of satellite precipitation prodcuts corrected using ConvAE, spatial correlation was dramatically improved. In the case of runoff simulation, the runoff simulation results using the satellite precipitation products corrected by ConvAE for all the outlets have significantly improved accuracy than the runoff results using original satellite precipitation products. Therefore, the bias correction technique using the ConvAE technique presented in this study can be applied in various hydrological analysis for large watersheds where rain guage network is not dense.

Evaluation of Rain Garden for Infiltration Capability and Runoff Reduction Efficiency (레인가든의 침투성능 및 유출저감효과 평가)

  • Yoo, Chulsang;Lee, Jinwook;Cho, Eunsaem;Zhu, Ju Hua;Choi, Hanna
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.101-111
    • /
    • 2015
  • This study conducted a field experiment to estimate the characteristics of the rain garden installed at the site near Haman, also proposed a one-dimensional model to simulate the infiltration and runoff from the rain garden. This model was used to evaluate the rain garden using the rainfall data after the installation and during the last 10 years. Also, this model was applied to the annual maximum rainfall events to quantify the size of the impervious area that the rain garden can offset the adverse effect. The results are summarized below. (1) Hydraulic conductivity of the rain garden was estimated to be about 0.0188 m/hr by the variable-stage experiment. Also, the simulation experiment using the last 10 years rainfall data over the entire roof area showed that the infiltration amount is about 90.38% out of the total rainfall. (2) Infiltration simulation of the annual maximum rainfall events during last 10 years showed that the rain garden can offset the impervious area with its size about 30 times of the rain garden surface.

FFC2Q Model for NPS Load Analysis according to Characteristics of Early Stage of Runoff (강우 초기특성에 따른 비점오염부하량 산정을 위한 FFC2Q 모형)

  • Lee, Jong-Tae;Seo, Kyung-A;Hur, Sung-Chul
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.3
    • /
    • pp.245-256
    • /
    • 2010
  • We study the basic theory and applicability of the WQUAL block in the FFC2Q model and the characteristics of non-point pollutant loads during the early stage of runoff. Study is also performed on selection of the values of the related parameters and their effect on the simulation results. FFC2Q simulation results are compared for verification with the measured data for three rainfall events in the Gunja Subbasin and found to be similar to the measured data in peak-flows, total runoff volumes, total loads, peak concentrations and times of peak concentration. This model thus shows results very close to those applying the SWMM and MOUSE models, even though it uses simplified input data. Related to rainfall distribution, under the condition of Huff 1st quartile distribution the pollutant loads occurred earlier than under other conditions, and in the early stage of rainfall the BOD and COD loads increased faster than the SS loads. The NPS loads were concentrated in the early stage of rainfall and finally reached total loads, so the rainfall after that could not contribute so much to the NPS loads.

Application to Evaluation of Hydrologic Time Series Forecasting for Long-Term Runoff Simulation (장기유출모의를 위한 수문시계열 예측모형의 적용성 평가)

  • Yoon, Sun-Kwon;Ahn, Jae-Hyun;Kim, Jong-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.809-824
    • /
    • 2009
  • Hydrological system forecasting, which is the short term runoff historical data during the limited period in dam site, is a conditional precedent of hydrological persistence by stochastic analysis. We have forecasted the monthly hydrological system from Andong dam basin data that is the rainfall, evaporation, and runoff, using the seasonal ARIMA (autoregressive integrated moving average) model. Also we have conducted long term runoff simulations through the forecasted results of TANK model and ARIMA+TANK model. The results of analysis have been concurred to the observation data, and it has been considered for application to possibility on the stochastic model for dam inflow forecasting. Thus, the method presented in this study suggests a help to water resource mid- and long-term strategy establishment to application for runoff simulations through the forecasting variables of hydrological time series on the relatively short holding runoff data in an object basins.

Application of storm water management model to designing the sponge city facilities in the Athletes Village of Military World Games in Wuhan

  • Liu, Jian;Liu, Yan;Liu, Ru;Li, Sixin;Wu, Lingyi
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.346-352
    • /
    • 2017
  • This study discusses application of the storm water management model (SWMM) to designing the sponge city facilities in the Athletes Village of Military World Games in Wuhan in October 2019. The SWMM was used to simulate the runoff processes and reduction efficiencies of the sponge city facilities. The runoffs of the sponge city facilities were compared with those of traditional drainage system for the design rainfall of 35.2mm and the rainfalls with different recurrence periods. The results show that the hign density sponge city facilities could meet the requirements for 80% of annual runoff control rate, SWMM can determine the scales of the sponge city facilities and effectively simulate the hydrological processes for different layout schemes. The simulation model is also helpful to making optimization of the sponge city facility layout.

  • PDF