• Title/Summary/Keyword: Rainfall time series

Search Result 202, Processing Time 0.032 seconds

Outlook for Temporal Variation of Trend Embedded in Extreme Rainfall Time Series (극치강우자료의 경향성에 대한 시간적 변동 전망)

  • Seo, Lynn;Choi, Min-Ha;Kim, Tae-Woong
    • Journal of Wetlands Research
    • /
    • v.12 no.2
    • /
    • pp.13-23
    • /
    • 2010
  • According to recent researches on climate change, the global warming is obvious to increase rainfall intensity. Damage caused by extreme hydrologic events due to global change is steadily getting bigger and bigger. Recently, frequently occurring heavy rainfalls surely affect the trend of rainfall observations. Probability precipitation estimation method used in designing and planning hydrological resources assumes that rainfall data is stationary. The stationary probability precipitation estimation method could be very weak to abnormal rainfalls occurred by climate change, because stationary probability precipitation estimation method cannot reflect increasing trend of rainfall intensity. This study analyzed temporal variation of trend in rainfall time series at 51 stations which are not significant for statistical trend tests. After modeling rainfall time series with maintaining observed statistical characteristics, this study also estimated whether rainfall data is significant for the statistical trend test in near future. It was found that 13 stations among sample stations will have trend within 10 years. The results indicate that non-stationary probability precipitation estimation method must be applied to sufficiently consider increase trend of rainfall.

부산시 동래 온천지역의 양수량, 온천수위, 강수량의 관련성 연구

  • 차용훈;함세영;정재열;장성;손건태
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.455-458
    • /
    • 2004
  • This study uses time series analyses to evaluate fluctuation of water levels in a geothermal water well due to pumping, in relation to rainfall at Dongrae hot-spring site on the southeastern coast of tile Korean peninsula. The volume of water pumped from the public study wells ranges from 542 to 993 m$^3$/month, and the minimum water level ranged from 35 to 144.7 m during the measured period. Autocorrelation analysis was conducted for the withdrawal rate at the public wells, water levels and rainfall. The autocorrelation of the withdrawal rate shows distinct periodicity with 3 months of lag time, the autocorrelation of rainfall shows weak linearity and short memory with 1 months of lag time, and the autocorrelation of water levels shows weak linearity and short memory with 2 months of lag time. The cross-correlation between the pumping volume and the minimum water level shows a maximum value 1 at a delayed time of 34 months. The cross-correlation between rainfall and the minimum water level shows a maximum value of 0.39 at a delayed time of 32 months.

  • PDF

Application of Hidden Markov Chain Model to identify temporal distribution of sub-daily rainfall in South Korea

  • Chandrasekara, S.S.K;Kim, Yong-Tak;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.499-499
    • /
    • 2018
  • Hydro-meteorological extremes are trivial in these days. Therefore, it is important to identify extreme hydrological events in advance to mitigate the damage due to the extreme events. In this context, exploring temporal distribution of sub-daily extreme rainfall at multiple rain gauges would informative to identify different states to describe severity of the disaster. This study proposehidden Markov chain model (HMM) based rainfall analysis tool to understand the temporal sub-daily rainfall patterns over South Korea. Hourly and daily rainfall data between 1961 and 2017 for 92 stations were used for the study. HMM was applied to daily rainfall series to identify an observed hidden state associated with rainfall frequency and intensity, and further utilized the estimated hidden states to derive a temporal distribution of daily extreme rainfall. Transition between states over time was clearly identified, because HMM obviously identifies the temporal dependence in the daily rainfall states. The proposed HMM was very useful tool to derive the temporal attributes of the daily rainfall in South Korea. Further, daily rainfall series were disaggregated into sub-daily rainfall sequences based on the temporal distribution of hourly rainfall data.

  • PDF

Development and validation of poisson cluster stochastic rainfall generation web application across South Korea (포아송 클러스터 가상강우생성 웹 어플리케이션 개발 및 검증 - 우리나라에 대해서)

  • Han, Jaemoon;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.335-346
    • /
    • 2016
  • This study produced the parameter maps of the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) stochastic rainfall generation model across South Korea and developed and validated the web application that automates the process of rainfall generation based on the produced parameter maps. To achieve this purpose, three deferent sets of parameters of the MBLRP model were estimated at 62 ground gage locations in South Korea depending on the distinct purpose of the synthetic rainfall time series to be used in hydrologic modeling (i.e. flood modeling, runoff modeling, and general purpose). The estimated parameters were spatially interpolated using the Ordinary Kriging method to produce the parameter maps across South Korea. Then, a web application has been developed to automate the process of synthetic rainfall generation based on the parameter maps. For validation, the synthetic rainfall time series has been created using the web application and then various rainfall statistics including mean, variance, autocorrelation, probability of zero rainfall, extreme rainfall, extreme flood, and runoff depth were calculated, then these values were compared to the ones based on the observed rainfall time series. The mean, variance, autocorrelation, and probability of zero rainfall of the synthetic rainfall were similar to the ones of the observed rainfall while the extreme rainfall and extreme flood value were smaller than the ones derived from the observed rainfall by the degree of 16%-40%. Lastly, the web application developed in this study automates the entire process of synthetic rainfall generation, so we expect the application to be used in a variety of hydrologic analysis needing rainfall data.

Some models for rainfall focused on the inner correlation structure

  • Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1290-1294
    • /
    • 2004
  • In this study, new stochastic point rainfall models which can consider the correlation structure between rainfall intensity and duration are developed. In order to consider the negative and positive correlation simultaneously, the Gumbels type-II bivariate distribution is applied, and for the cluster structure of rainfall events, the Neyman-Scott cluster point process is selected. In the theoretical point of view, it is shown that the models considering the dependent structure between rainfall intensity and duration have slightly heavier tail autocorrelation functions than the corresponding independent mode]s. Results from generating long time rainfall events show that the dependent models better reproduce historical rainfall time series than the corresponding independent models in the sense of autocorrelation structures, zero rainfall probabilities and extreme rainfall events.

  • PDF

Time Series Analysis of SPOT VEGETATION Instrument Data for Identifying Agricultural Pattern of Irrigated and Non-irrigated Rice cultivation in Suphanburi Province, Thailand

  • Kamthonkiat, Daroonwan;Kiyoshi, Honda;Hugh, Turral;Tripathi, Nitin K.;Wuwongse, Vilas
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.952-954
    • /
    • 2003
  • In this paper, we present the different characteristics of NDVI fluctuation pattern between irrigated and non-irrigated area in Suphanburi province, in Central Thailand. For non-irrigated rice cultivation area, there is a strong correlation between NDVI fluctuation and peak rainfall, while there is a lower correlation with irrigated area. In this study, the 'peak detector' classifier was developed to identify the area of non-irrigated and irrigated cropping and its cropping intensity (number of crops per year). This classifier was created based on cropping characteristics such as number of crops, time or planting period of each crop and its relationship with the peak of rainfall. The classified result showed good accuracy in identification irrigated and nonirrigated rice cultivation areas.

  • PDF

A Study on Optimal Time Distribution of Extreme Rainfall Using Minutely Rainfall Data: A Case Study of Seoul (분단위 강우자료를 이용한 극치강우의 최적 시간분포 연구: 서울지점을 중심으로)

  • Yoon, Sun-Kwon;Kim, Jong-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.275-290
    • /
    • 2012
  • In this study, we have developed an optimal time distribution model through extraction of peaks over threshold (POT) series. The median values for annual maximum rainfall dataset, which are obtained from the magnetic recording (MMR) and the automatic weather system(AWS) data at Seoul meteorological observatory, were used as the POT criteria. We also suggested the improved methodology for the time distribution of extreme rainfall compared to Huff method, which is widely used for time distributions of design rainfall. The Huff method did not consider changing in the shape of time distribution for each rainfall durations and rainfall criteria as total amount of rainfall for each rainfall events. This study have suggested an extracting methodology for rainfall events in each quartile based on interquartile range (IQR) matrix and selection for the mode quartile storm to determine the ranking cosidering weighting factors on minutely observation data. Finally, the optimal time distribution model in each rainfall duration was derived considering both data size and characteristics of distribution using kernel density function in extracted dimensionless unit rainfall hyetograph.

Investigating the performance of different decomposition methods in rainfall prediction from LightGBM algorithm

  • Narimani, Roya;Jun, Changhyun;Nezhad, Somayeh Moghimi;Parisouj, Peiman
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.150-150
    • /
    • 2022
  • This study investigates the roles of decomposition methods on high accuracy in daily rainfall prediction from light gradient boosting machine (LightGBM) algorithm. Here, empirical mode decomposition (EMD) and singular spectrum analysis (SSA) methods were considered to decompose and reconstruct input time series into trend terms, fluctuating terms, and noise components. The decomposed time series from EMD and SSA methods were used as input data for LightGBM algorithm in two hybrid models, including empirical mode-based light gradient boosting machine (EMDGBM) and singular spectrum analysis-based light gradient boosting machine (SSAGBM), respectively. A total of four parameters (i.e., temperature, humidity, wind speed, and rainfall) at a daily scale from 2003 to 2017 is used as input data for daily rainfall prediction. As results from statistical performance indicators, it indicates that the SSAGBM model shows a better performance than the EMDGBM model and the original LightGBM algorithm with no decomposition methods. It represents that the accuracy of LightGBM algorithm in rainfall prediction was improved with the SSA method when using multivariate dataset.

  • PDF

Characteristic Change Analysis of Rainfall Events using Daily Rainfall Data (일강우자료를 이용한 강우사상의 변동 특성 분석)

  • Oh, Tae-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.933-951
    • /
    • 2009
  • Climate change of global warming may affect the water circulation in Korea. Rainfall is occurred with complex of multiple climatic indices. Therefore, the rainfall is one of the most significant index due to climate change in the process of water circulation. In this research, multiple time series data of rainfall events were extracted to represent the rainfall characteristics. In addition, the occurrence of rainfall time series analyzed by annual, seasonal and monthly data. Analysis method used change analysis of mean and standard deviation and trend analysis. Also, changes in rainfall characteristics and the relative error was calculated during the last 10 years for comparison with past data. At the results, significant statistical results weren't showed by randomness of rainfall data. However, amount of rainfall generally increased last 10 years, and number of raining days had trend of decrease. In addition, seasonal and monthly changes in the rainfall characteristics can be found to appear differently.

Stochastic Simulation Model for non-stationary time series using Wavelet AutoRegressive Model

  • Moon, Young-Il;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1437-1440
    • /
    • 2007
  • Many hydroclimatic time series are marked by interannual and longer quasi-period features that are associated with narrow band oscillatory climate modes. A time series modeling approach that directly considers such structures is developed and presented. The essence of the approach is to first develop a wavelet decomposition of the time series that retains only the statistically significant wavelet components, and to then model each such component and the residual time series as univariate autoregressive processes. The efficacy of this approach is demonstrated through the simulation of observed and paleo reconstructions of climate indices related to ENSO and AMO, tree ring and rainfall time series. Long ensemble simulations that preserve the spectral attributes of the time series in each ensemble member can be generated. The usual low order statistics are preserved by the proposed model, and its long memory performance is superior to the direction application of an autoregressive model.

  • PDF