• Title/Summary/Keyword: Rainfall slope test

Search Result 98, Processing Time 0.024 seconds

Risk Assesment for Large-scale Slopes Using Multiple Regression Analysis (다중회귀분석을 이용한 대규모 비탈면의 위험도 평가)

  • Lee, Jong-Gun;Chang, Buhm-Soo;Kim, Yong-Soo;Suk, Jae-Wook;Moon, Joon-Shik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.99-106
    • /
    • 2013
  • In this study, the correlation of evaluation items and safety rating for 104 of large-scale slopes along the general national road was analyzed. And, we proposed the regression model to predict the safety rating using the multiple regressions analysis. As the result, it is shown that the evaluation items of slope angle, rainfall and groundwater have a low correlation with safety rating. Also, the regression model suggested by multiple regression analysis shows high predictive value, and it would be possible to apply if the evaluation items of excavation condition and groundwater (rainfall) are not clear.

A Case Study on the Slope Revegetation Technology of Biological Engineering Using the Ligustrum obtusifolium (쥐똥나무를 이용한 생물공학적 비탈면 녹화공법의 사례연구)

  • Kim, Hyea-Ju;Kang, Hyo-Suk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.3
    • /
    • pp.47-53
    • /
    • 1999
  • This study was carried out to suggest the slope revegetation technology of biological engineering using the Ligustrum obtusifolium, which is one of the pioneer plant species. Ahead of the experimental construction, we evaluated the L. obtusifolium's value of biological engineering for the slope stabilization by testing the growth rate after the cuttings were buried for 8 weeks('98. 7. ~ '98. 9.). In this test, it was found that the L. obtusifolium, one of the species deep rooted with developed underground parts, is very effective for the slope stabilization and that the rooting powder(Hormex Powder) gave the better effects on root germination. In April of 1999, the experimental construction of biological engineering technology using recycled L. obtusifolium live cuttings(applied growth-stimulating compound) and green bags was conducted at sandy cut-slope in GLEN ROSS G.C.(Yongin). The slope was tolerant of soil erosion despite of heavy rainfall in the rainy season and many plant species invading for five months('99. 4. ~ '99. 9.). The vegetation research was performed through examining the frequency of each block using the transect method. 21 kinds of plant speices appeared in total area($25.5m^2$) and the dominant species are Digitaria sanguinalis, Setaria viridis, Cyperus amuricus, Persicaria blumei, Artemisia princeps var. orientalis. With regard to life forms, therophytes were shown with a dominant distribution of 66.7% of total species and neophytes relatively with a low distribution of 19.0%. Furthermore, it can be estimated that there is no ecological stabilization of this slope with the result of the ruderal species' occupation of 71.4%. It is too early to argue about ecological mechanical advantages and disadvantages of this technology, but, from the result of this study, it is expected that the slope revegetation technology of biological engineering using L. obtusifolium can be effectively applied to sandy slope(not rock or weathered rock slope) and that the early rapid stabilization and favorable succession could be done with the improvement of soil condition.

  • PDF

Study on Rainfall infiltration Characteristics for Weathered Soils: Analysis of Soil Volumetric Water Content and Its Application (국내 풍화토의 강우 침투특성 분석을 위한 실험연구: 토양 체적함수비 분석 및 적용성 평가)

  • Kim, Man-Il;Chae, Byung-Gon;Cho, Yong-Chan;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.83-92
    • /
    • 2008
  • In order to analyze infiltration characteristics of rainfall in soil, two laboratory experiments were conducted using an amplitude domain reflectometry (ADR) sensor and a pore water pressure meter (PWP) in this study. The first experiment is to understand the dependency of volumetric water content and temperature for standard sand and weathered granite soil. The second experiment is a laboratory flume test with changes of rainfall condition. As the results of the dependency experiment, the volumetric water content is increased with increase of the output voltage measured by the ADR sensor in both the standard sands and weathered granite soil. Furthermore, the results also indicate necessity of consideration of the temperature dependency under the condition of high volumetric water contents from 0.15 to 0.45. In the flume test, two measurement devices are detected to the variation of volumetric water content and pore water pressure at the installation point of the flume. In especial, the measured values of ADR4 and PWP3 installed on the lower part of slope are higher than those of the others. It means that the lower part of slope plays a role of a runoff face and a beginning point of slope failure.

A Study for Characterization on Shallow Behavior of Soil Slope by Flume Experiments (토조실험 장치를 이용한 토사비탈면 표층거동 특성 연구)

  • Suk, Jae-wook;Park, Sung-Yong;Na, Geon-ha;Kang, Hyo-Sub
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.489-499
    • /
    • 2018
  • A flume experiments was used to study the characteristics of the surface displacements and volumetric water contents (VWC) during torrential rain. The surface displacement and VWC of the granite weathered soil were measured for rainfall intensity (100, 200 mm/hr) and initial ground condition (VWC 7, 14, 26%). The test processes were also recorded by video cameras. According to the test results, The shallow failure is classified into three types: retrogressive failure, progressive failure and defined failure. In the case of retrogressive failure and progressive failure, relatively large damage could occur due to the feature that soil is deposited to the bottom of the slope. the shallow failure occurred when the VWC reached a certain value regardless of the initial soil condition. It was found that the shallow failure can be predicted through the increase patton of the VWC under the condition of the ground dry condition (VWC 7%) and the natural condition (VWC 14%). For high rainfall intensity, progressive failure predominated, and rainfall intensity above a certain level did not affect wetting front transition.

A Developmont of Numerical Mo del on the Estimation of the Log-term Run-off for the Design of Riverheads Works -With Special Reference to Small and Medium Sijed Catchment Areas- (제수원공 설계를 위한 장기간 연속수수량 추정모형의 개발 - 중심유역을 중심으로)

  • 엄병현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.4
    • /
    • pp.59-72
    • /
    • 1987
  • Although long-term runoff analysis is important as much as flood analysis in the design of water works, the technological level of the former is relatively lower than that of the latter. In this respect, the precise estimation model for the volume of successive runoff should he developed as soon as possible. Up to now, in Korea, Gajiyama's formula has been widely used in long-term runoff analysis, which has many problems in applying in real situation. On the other hand, in flood analysis, unit hydrograph method has been exclusively used. Therefore, this study aims at trying to apply unit hydrograph method in long-term runoff analysis for the betterment of its estimation. Four test catchment areas were selected ; Maesan area in Namlum river as a representative area of Han river system, Cheongju area in Musim river as one of Geum river system, Hwasun area in Hwasun river as one of Yongsan river system, and Supyung area in Geum river as one of Nakdong river system. In the analysis of unit hydrograph, seperation of effective rainfall was carried out firstly. Considering that effective rainfall and moisture condition of catchrnent area are inside and outside of a phenomenon respectively and the latter is not considered in the analysis, Initial base flow(qb)was selected as an index of moisture condition. At the same time, basic equation(Eq.7) was established, in which qb can take a role as a parameter in relating between cumulative rainfall(P) and cumulative loss of rainfall(Ld). Based on the above equation, computer program for estimation model of qbwas seperately developed according to the range of qb, Developed model was applied to measured hydrographs and hyetographs for total 10 years in 4 test areas and effective rainfall was estimated. Estimation precision of model was checked as shown in Tab- 6 and Fig.8. In the next stage, based on the estimated effective rainfall(R) and runoff(Qd), a runoff distribution ratio was calculated for each teat area using by computerised least square method and used in making unit hydrographs in each test area. Significance of induced hydrographs was tested by checking the relative errors between estimated and measured runoff volume(Tab-9, 10). According to the results, runoff estimation error by unit hydrograph itself was merely 2 or 3 %, but other 2 or 3 % of error proved to be transferred error in the seperation of effective rainfall. In this study, special attentioning point is that, in spite of different river systems and forest conditions of test areas, standardized unit hydrographs for them have very similar curve shape, which can be explained by having similar catchinent characteristics such as stream length, catchinent area, slope, and vegetation intensity. That fact should be treated as important factor ingeneralization of unit hydrograph method.

  • PDF

Analysis of Busan rainfall characteristics considering climate change (기후변화를 고려한 부산시 강우특성분석)

  • Shon, Tae-Seok;Baek, Meung-Ki;Lee, Kyu-Yeol;Park, Kyung-Jae;Shin, Hyun-Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1099-1103
    • /
    • 2010
  • 본 연구에서는 기후변화로 인한 부산 강우특성을 고려하고 강수량의 증감을 알아보기 위하여 부산 기상청 지점의 강우 자료를 수집하고 분석하여 월, 계절, 연 평균강우와 지속시간별 연최대 강우량 및 강우강도(30 mm 이상)를 Trend 분석하였다. 분석기법은 T Test, Hotelling Pabst Test, Non Linear Test, Mann-Kendall Test, Sen Test이고 0.99, 0.95, 0.90의 유의수준별로 분석하였다. 분석된 결과는 1등급에서 4등급까지 등급화하고, 특히 Sen Test의 Slope는 빈도분석하여 등급화하였다.

  • PDF

Simulations of Runoff using Rice Straw Mats and Soil Amendments (볏짚거적과 토양개량제를 이용한 강우유출 모의)

  • Won, Chul-Hee;Shin, Min-Hwan;Choi, Yong-Hun;Shin, Jae-Young;Park, Woon-Ji;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.95-102
    • /
    • 2012
  • The objective of this research was to experimentally test the effect of rice straw mats on the reduction of runoff, sediment discharge and turbidity under a laboratory scale. We used the small runoff plots of 1 m ${\times}$ 1 m ${\times}$ 0.65 m ($L{\times}W{\times}H$) in size filled with loamy sand. Experimental treatments were bare (control), rice straw mat cover of straw mats + PAM + Gypsum (SPG), rice straw mats + Chaff + PAM + Gypsum (SCPG) and rice straw mats + Sawdust + PAM + Gypsum (SSPG); slope of 10 % or 20 %; and rainfall intensity of 30 mm/hr. Runoff volume and rate of covered plots were significantly lower than those of control plot. Average runoff rate of covered plots, slope of 10 % and 20 %, decreased 85.6 % and 72 % in respectively. Sediment reduction ratio was more than 99 % regardless of slope. The differences runoff and sediment discharge among different cover materials were not significant. It was also shown that even if runoff reduction by surface cover were low, sediment discharge reduction could be very significant and contribute to improve the water quality of streams in sloping agricultural regions. It was concluded that the use of straw mat and soil amendments (PAM and Gypsum) on sloping agricultural fields could reduce soil erosion and muddy runoff significantly and help improve the water quality and aquatic ecosystem in receiving waters. But mixing effect of PAM and Gypsum was minimal.

Improvement for Gutter Design Method in Sloping Area (비탈면 배수로 설계기술 개선에 관한 연구)

  • Lee, Young-Dai;Kim, Jong-Soon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.109-115
    • /
    • 2008
  • Malfunction of gutter systems in the slope area accelerate to percolate surface flow into underground and to cause the decrease of soil strength, Overflowing from gutter causes soil erosion from slope surface, secondary it is one of the main reasons to cause disaster in the hillside area. Much researches were reported and are undergoing about flood disaster in the down stream area, but rare in the upper reach(hillside). It is considered that improving function of gutter in the hillside is very important to prevent the disaster caused by rainfall. In this paper, After analyzing relationship between rainfall and disaster on the hillside in Busan, researches about having surface flow run into gutter effectively and preventing from overflowing outside of gutter on the hillside in Busan were carried out. Improved design methods of gutter are suggested to mitigate disaster in the sloping area by analysis of collected data and hydraulic model test.

Evaluation of Field Applicability of Slope of Improved Soil for Ground Stabilizer (지반안정재 개량토의 토사 비탈면 현장 적용성 평가)

  • Lee, Kang-Il;Park, Seong-Bak;Choi, Min-Ju
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.35-44
    • /
    • 2021
  • This research studies the stabilization method for improved soil sloped through the on-site application of Paper Flyash ground stabilizers. The target strength required for improved soil is 500 kPa, and the compressive strength for the slope surface needs to be less than 1,000 kPa after the improvement in order to plant vegetation. To meet this condition, we mixed soil from the site and the ground stabilization material, which is the main material for surface improvement material, performed mixing design and conducted various tests including strength test, permeability test and plantation test. After analyzing the results of the compression test on improved soil slope, we proposed soil constants for the improved soil. In order to evaluate the applicability of the improved soil on the slope, the site construction was carried out on the collapsed slope and the reinforcement evaluation of the surface of the improvement soil was conducted. The stability was not secured before the reinforcement, but the test shows after the reinforcement with improved soil, the safety rate is secured up to 48 hours during the raining period. In addition, the compressive strength of the improved soil at the site was secured at more than 200 kPa adhesion as planned, and the soil hardness test result was also found to be within the specified value of 18-23 mm, which increased the resistance to rainfall and ability to grow plant on the surface for improved soil.

A Generalized Model on the Estimation of the Long - term Run - off Volume - with Special Reference to small and Medium Sized Catchment Areas- (장기만연속수수량추정모형의 실용화 연구 -우리나라 중소유역을 대상으로-)

  • 임병현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.4
    • /
    • pp.27-43
    • /
    • 1990
  • This study aimed at developing a generalized model on the estimation of the long - term run - off volume for practical purpose. During the research period of last 3 years( 1986-1988), 3 types of estimation model on the long - term run - off volume(Effective rainfall model, unit hydrograph model and barne's model for dry season) had been developed by the author. In this study, through regressional analysis between determinant factors (bi of effective rainfall model, ai of unit hydrograph model and Wi of barne's model) and catchment characteris- tics(catchment area, distance round the catchment area, massing degree coefficient, river - exte- nsion, river - slope, river - density, infiltration of Watershed) of 11 test case areas by multiple regressional method, a new methodology on the derivation of determinant factors from catchment characteristics in the watershed areas having no hydrological station was developed. Therefore, in the resulting step, estimation equations on run - off volume for practical purpose of which input facor is only rainfall were developed. In the next stage, the derived equations were applied on the Kang - and Namgye - river catchment areas for checking of their goodness. The test results were as follows ; 1. In Kang - river area, average relative estimation errors of 72 hydrographs and of continuous daily run - off volume for 245 days( 1/5/1982 - 31/12) were calculated as 6.09%, 9.58% respectively. 2. In Namgye - river area, average relative estimation errors of 65 hydrographs and of conti- nuous daily run - off volume for 2fl days(5/4/1980-31/12) were 5.68%, 10.5% respectively. In both cases, relative estimation error was averaged as 7.96%, and so, the methodology in this study might be hetter organized than Kaziyama's formula when comparing with the relative error of the latter, 24~54%. However, two case studies cannot be the base materials enough for the full generalization of the model. So, in the future studies, many test case studies of this model should he carries out in the various catchment areas for making its generalization.

  • PDF