• Title/Summary/Keyword: Rainfall prediction

Search Result 567, Processing Time 0.022 seconds

Pest Prediction in Rice using IoT and Feed Forward Neural Network

  • Latif, Muhammad Salman;Kazmi, Rafaqat;Khan, Nadia;Majeed, Rizwan;Ikram, Sunnia;Ali-Shahid, Malik Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.133-152
    • /
    • 2022
  • Rice is a fundamental staple food commodity all around the world. Globally, it is grown over 167 million hectares and occupies almost 1/5th of total cultivated land under cereals. With a total production of 782 million metric tons in 2018. In Pakistan, it is the 2nd largest crop being produced and 3rd largest food commodity after sugarcane and rice. The stem borers a type of pest in rice and other crops, Scirpophaga incertulas or the yellow stem borer is very serious pest and a major cause of yield loss, more than 90% damage is recorded in Pakistan on rice crop. Yellow stem borer population of rice could be stimulated with various environmental factors which includes relative humidity, light, and environmental temperature. Focus of this study is to find the environmental factors changes i.e., temperature, relative humidity and rainfall that can lead to cause outbreaks of yellow stem borers. this study helps to find out the hot spots of insect pest in rice field with a control of farmer's palm. Proposed system uses temperature, relative humidity, and rain sensor along with artificial neural network to predict yellow stem borer attack and generate warning to take necessary precautions. result shows 85.6% accuracy and accuracy gradually increased after repeating several training rounds. This system can be good IoT based solution for pest attack prediction which is cost effective and accurate.

A Study on Time Series Cross-Validation Techniques for Enhancing the Accuracy of Reservoir Water Level Prediction Using Automated Machine Learning TPOT (자동기계학습 TPOT 기반 저수위 예측 정확도 향상을 위한 시계열 교차검증 기법 연구)

  • Bae, Joo-Hyun;Park, Woon-Ji;Lee, Seoro;Park, Tae-Seon;Park, Sang-Bin;Kim, Jonggun;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • This study assessed the efficacy of improving the accuracy of reservoir water level prediction models by employing automated machine learning models and efficient cross-validation methods for time-series data. Considering the inherent complexity and non-linearity of time-series data related to reservoir water levels, we proposed an optimized approach for model selection and training. The performance of twelve models was evaluated for the Obong Reservoir in Gangneung, Gangwon Province, using the TPOT (Tree-based Pipeline Optimization Tool) and four cross-validation methods, which led to the determination of the optimal pipeline model. The pipeline model consisting of Extra Tree, Stacking Ridge Regression, and Simple Ridge Regression showed outstanding predictive performance for both training and test data, with an R2 (Coefficient of determination) and NSE (Nash-Sutcliffe Efficiency) exceeding 0.93. On the other hand, for predictions of water levels 12 hours later, the pipeline model selected through time-series split cross-validation accurately captured the change pattern of time-series water level data during the test period, with an NSE exceeding 0.99. The methodology proposed in this study is expected to greatly contribute to the efficient generation of reservoir water level predictions in regions with high rainfall variability.

Development to Prediction Technique of Slope Hazards in Gneiss Area using Decision Tree Model (의사결정나무모형을 이용한 편마암 지역에서의 급경사지재해 예측기법 개발)

  • Song, Young-Suk;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.45-54
    • /
    • 2008
  • Based on the data obtained from field investigation and soil testing to slope hazards occurrence section and non-occurrence section in gneiss area, a prediction technique was developed by the use of a decision tree model, which is one of the statistical analysis methods. The slope hazards data of Seoul and Kyonggi Province, which were induced by heavy rainfall in 1998, were 104 sections in gneiss area. The number of data applied in developing prediction model was 61 sections except a vacant value. Among these data, the number of data occurred slope hazards was 34 sections and the number of data non-occurred slope hazards was 27 sections. The statistical analyses using the decision tree model were applied to chi-square statistics, gini index and entrophy index. As the results of analyses, a slope angle, a degree of saturation and an elevation were selected as the classification standard. The prediction model of decision tree using entrophy index is most likely accurate. The classification standard of the selected prediction model is composed of the slope angle, the degree of saturation and the elevation from the first choice stage. The classification standard values of the slope angle, the degree of saturation and elevation are $17.9^{\circ}$, 52.1% and 320 m, respectively.

Prediction of water level in a tidal river using a deep-learning based LSTM model (딥러닝 기반 LSTM 모형을 이용한 감조하천 수위 예측)

  • Jung, Sungho;Cho, Hyoseob;Kim, Jeongyup;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1207-1216
    • /
    • 2018
  • Discharge or water level predictions at tidally affected river reaches are currently still a great challenge in hydrological practices. This research aims to predict water level of the tide dominated site, Jamsu bridge in the Han River downstream. Physics-based hydrodynamic approaches are sometimes not applicable for water level prediction in such a tidal river due to uncertainty sources like rainfall forecasting data. In this study, TensorFlow deep learning framework was used to build a deep neural network based LSTM model and its applications. The LSTM model was trained based on 3 data sets having 10-min temporal resolution: Paldang dam release, Jamsu bridge water level, predicted tidal level for 6 years (2011~2016) and then predict the water level time series given the six lead times: 1, 3, 6, 9, 12, 24 hours. The optimal hyper-parameters of LSTM model were set up as follows: 6 hidden layers number, 0.01 learning rate, 3000 iterations. In addition, we changed the key parameter of LSTM model, sequence length, ranging from 1 to 6 hours to test its affect to prediction results. The LSTM model with the 1 hr sequence length led to the best performing prediction results for the all cases. In particular, it resulted in very accurate prediction: RMSE (0.065 cm) and NSE (0.99) for the 1 hr lead time prediction case. However, as the lead time became longer, the RMSE increased from 0.08 m (1 hr lead time) to 0.28 m (24 hrs lead time) and the NSE decreased from 0.99 (1 hr lead time) to 0.74 (24 hrs lead time), respectively.

Prediction of the Italian Ryegrass (Lolium multiflorum Lam.) Yield via Climate Big Data and Geographic Information System in Republic of Korea (기상 빅 데이터와 지리정보시스템을 이용한 이탈리안 라이그라스의 수량예측)

  • Kim, Moonju;Oh, Seung Min;Kim, Ji Yung;Lee, Bae Hun;Peng, Jinglun;Kim, Si Chul;Chemere, Befekadu;Nejad, Jalil Ghassemi;Kim, Kyeong Dae;Jo, Mu Hwan;Kim, Byong Wan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.2
    • /
    • pp.145-153
    • /
    • 2017
  • This study was aimed to find yield prediction model of Italian ryegrass using climate big data and geographic information. After that, mapping the predicted yield results using Geographic Information System (GIS) as follows; First, forage data were collected; second, the climate information, which was matched with forage data according to year and location, was gathered from the Korean Metrology Administration (KMA) as big data; third, the climate layers used for GIS were constructed; fourth, the yield prediction equation was estimated for the climate layers. Finally, the prediction model was evaluated in aspect of fitness and accuracy. As a result, the fitness of the model ($R^2$) was between 27% to 95% in relation to cultivated locations. In Suwon (n=321), the model was; DMY = 158.63AGD -8.82AAT +169.09SGD - 8.03SAT +184.59SRD -13,352.24 (DMY: Dry Matter Yield, AGD: Autumnal Growing Days, SGD: Spring Growing Days, SAT: Spring Accumulated Temperature, SRD: Spring Rainfall Days). Furthermore, DMY was predicted as $9,790{\pm}120$ (kg/ha) for the mean DMY(9,790 kg/ha). During mapping, the yield of inland areas were relatively greater than that of coastal areas except of Jeju Island, furthermore, northeastern areas, which was mountainous, had lain no cultivations due to weak cold tolerance. In this study, even though the yield prediction modeling and mapping were only performed in several particular locations limited to the data situation as a startup research in the Republic of Korea.

Analysis of Slope Stability Considering the Saturation Depth Ratio by Rainfall Infiltration in Unsaturated Soil (불포화토 내 강우침투에 따른 포화깊이비를 고려한 사면안정해석)

  • Chae, Byung-Gon;Park, Kyu-Bo;Park, Hyuck-Jin;Choi, Jung-Hae;Kim, Man-Il
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.343-351
    • /
    • 2012
  • This study proposes a modified equation to calculate the factor of safety for an infinite slope considering the saturation depth ratio as a new variable calculated from rainfall infiltration into unsaturated soil. For the proposed equation, this study introduces the concepts of the saturation depth ratio and subsurface flow depth. Analysis of the factor of safety for an infinite slope is conducted by the sequential calculation of the effective upslope contributing area, subsurface flow depth, and the saturation depth ratio based on quasi-dynamic wetness index theory. The calculation process makes it possible to understand changes in the factor of safety and the infiltration behavior of individual rainfall events. This study analyzes stability changes in an infinite slope, considering the saturation depth ratio of soil, based on the proposed equation and the results of soil column tests performed by Park et al. (2011 a). The analysis results show that changes in the factor of safety are dependent on the saturation depth ratio, which reflects the rainfall infiltration into unsaturated weathered gneiss soil. Under continuous rainfall with intensities of 20 and 50 mm/h, the time taken for the factor of safety to decrease to less than 1.3 was 2.86-5.38 hours and 1.34-2.92 hours, respectively; in the case of repeated rainfall events, the time taken was between 3.27 and 5.61 hours. The results demonstrate that it is possible to understand changes in the factor of safety for an infinite slope dependent on the saturation depth ratio.

Impact Assessment of Agricultural Reservoir on Streamflow Simulation Using Semi-distributed Hydrologic Model (준분포형 모형을 이용한 농업용 저수지가 안성천 유역의 유출모의에 미치는 영향 평가)

  • Kim, Bo Kyung;Kim, Byung Sik;Kwon, Hyun Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.11-22
    • /
    • 2009
  • Long-term rainfall-runoff modeling is a key element in the Earth's hydrological cycle, and associated with many different aspects such as dam design, drought management, river management flow, reservoir management for water supply, water right permission or coordinate, water quality prediction. In this regard, hydrologists have used the hydrologic models for design criteria, water resources assessment, planning and management as a main tool. Most of rainfall-runoff studies, however, were not carefully performed in terms of considering reservoir effects. In particular, the downstream where is severely affected by reservoir was poorly dealt in modeling rainfall-runoff process. Moreover, the effects can considerably affect overall the rainfallrunoff process. An objective of this study, thus, is to evaluate the impact of reservoir operation on rainfall-runoff process. The proposed approach is applied to Anseong watershed, where is in a mixed rural/urban setting of the area and in Korea, and has been experienced by flood damage due to heavy rainfall. It has been greatly paid attention to the agricultural reservoirs in terms of flood protection in Korea. To further investigate the reservoir effects, a comprehensive assessment for the results are discussed. Results of simulations that included reservoir in the model showed the effect of storage appeared in spring and autumn when rainfall was not concentrated. In periods of heavy rainfall, however, downstream runoff increased in simulations that do not consider reservoir factor. Flow duration curve showed that changes in streamflow depending upon the presence or absence of reservoir factor were particularly noticeable in ninety-five day flow and low flow.

A PRELIMINARY STUDY FOR THE COUPLED ATMOSPHERS-STREAMFLOW MODELING IN KOREA

  • Bae, Deg-Hyo;Chung, Jun-Seok;Kwon, Won-Tae
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.25-37
    • /
    • 2000
  • This study presents some results of a preliminary study for the coupled precipitation and river flow prediction system. The model system in based on three numerical models, Mesoscale Atmospheric Simulation model for generating atmospheric variables. Soil-Plant-Snow model for computing interactions within soil-canopy-snow system as well as the energy and water exchange between the atmosphere and underlying surfaces, and TOPMODEL for simulating stream flow, subsurface flow, and water tabled depth in an watershed. The selected study area is the 2,703 $\alpha_4$ $\km_2$ Soyang River basin with outlet at Soyang dam site. In addition to providing the results of rainfall and stream flow predictions, some results of DEM and GIS application are presented. It is obvious that the accurate river flow predictions are highly dependant on the accurate predictation predictions.

  • PDF

Forecasting Water Levels Of Bocheong River Using Neural Network Model

  • Kim, Ji-tae;Koh, Won-joon;Cho, Won-cheol
    • Water Engineering Research
    • /
    • v.1 no.2
    • /
    • pp.129-136
    • /
    • 2000
  • Predicting water levels is a difficult task because a lot of uncertainties are included. Therefore the neural network which is appropriate to such a problem, is introduced. One day ahead forecasting of river stage in the Bocheong River is carried out by using the neural network model. Historical water levels at Snagye gauging point which is located at the downstream of the Bocheong River and average rainfall of the Bocheong River basin are selected as training data sets. With these data sets, the training process has been done by using back propagation algorithm. Then waters levels in 1997 and 1998 are predicted with the trained algorithm. To improve the accuracy, a filtering method is introduced as predicting scheme. It is shown that predicted results are in a good agreement with observed water levels and that a filtering method can overcome the lack of training patterns.

  • PDF

RUNOFF ANALYSIS BY SCS CURVE NUMBER METHOD

  • Yoon, Tae-Hoon
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.21-32
    • /
    • 1993
  • The estimates of both runoff depth and peak runoff by the basin runoff curve numbers, which are CN-II for antecedent moisture condition- II and CN -III for antecedent moisture condition-III, obtained from hydrological soil-cover complexes of 26 watersheds are investigated by making use of the observed curve numbers, which are median curve number and optimum curve number, computed from 250 rainfall-runoff records. For gaged basins the median curve numbers are recommended for the estimation of both runoff depth and peak runoff. For ungaged basin, found is that for the estimate of runoff depth CN-II is adequate and for peak runoff CN-II is suitable. Also investigated is the variation of the runoff curves during storms. By the variable runoff curve numbers, the prediction of runoff depth and peak runoff can be improved slightly.

  • PDF