• Title/Summary/Keyword: Rainfall prediction

Search Result 567, Processing Time 0.027 seconds

Analysis of Contribution of Climate and Cultivation Management Variables Affecting Orchardgrass Production (오차드그라스의 생산량에 영향을 미치는 기후 및 재배관리의 기여도 분석)

  • Moonju Kim;Ji Yung Kim;Mu-Hwan Jo;Kyungil Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • This study aimed to confirm the importance ratio of climate and management variables on production of orchardgrass in Korea (1982-2014). For the climate, the mean temperature in January (MTJ, ℃), lowest temperature in January (LTJ, ℃), growing days 0 to 5 (GD 1, day), growing days 5 to 25 (GD 2, day), Summer depression days (SSD, day), rainfall days (RD, day), accumulated rainfall (AR, mm), and sunshine duration (SD, hr) were considered. For the management, the establishment period (EP, 0-6 years) and number of cutting (NC, 2nd-5th) were measured. The importance ratio on production of orchardgrass was estimated using the neural network model with the perceptron method. It was performed by SPSS 26.0 (IBM Corp., Chicago). As a result, EP was the most important variable (100%), followed by RD (82.0%), AR (79.1%), NC (69.2%), LTJ (66.2%), GD 2 (63.3%), GD 1 (61.6%), SD (58.1%), SSD (50.8%) and MTJ (41.8%). It implies that EP, RD, AR, and NC were more important than others. Since the annual rainfall in Korea is exceed the required amount for the growth and development of orchardgrass, the damage caused by heavy rainfall exceeding the appropriate level could be reduced through drainage management. It means that, when cultivating orchardgrass, factors that can be controlled were relatively important. Although it is difficult to interpret the specific effect of climates on production due to neural networking modeling, in the future, this study is expected to be useful in production prediction and damage estimation by climate change by selecting major factors.

Coverage Prediction for Aerial Relay Systems based on the Common Data Link using ITU Models (ITU 모델을 이용한 공용데이터링크 기반의 공중중계 시스템의 커버리지 예측)

  • Park, Jae-Soo;Song, Young-Hwan;Choi, Hyo-Gi;Yoon, Chang-Bae;Hwang, Chan-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.21-30
    • /
    • 2020
  • In this paper, we predicted the propagation loss for the air-to-ground (A2G) channel between the ground control system and the unmanned aerial vehicle (UAV) using the prediction model for the aircraft recommended by the International Telecommunication Union (ITU). We analyzed the network coverage of the aerial relay system based on the medium altitude UAVs by expanding it into the air-to-air (A2A) channel. Climate and geographic factors in Korea were used to predict propagation loss due to atmospheres. We used the measured data published by the Telecommunication Technology Association (TTA) for regional rainfall-rate and effective earth radius factors to increase accuracy. In addition, the aerial relay communication system used the key parameter of the common data link (CDL) system developed in Korea recently. Prediction results show that the network coverage of the aerial relay system broadens at higher altitude.

Long-term Streamflow Prediction Using ESP and RDAPS Model (ESP와 RDAPS 수치예보를 이용한 장기유량예측)

  • Lee, Sang-Jin;Jeong, Chang-Sam;Kim, Joo-Cheol;Hwang, Man-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.12
    • /
    • pp.967-974
    • /
    • 2011
  • Based on daily time series from RDAPS numerical weather forecast, Streamflow prediction was simulated and the result of ESP analysis was implemented considering quantitative mid- and long-term forecast to compare the results and review applicability. The result of ESP, ESP considering quantitative weather forecast, and flow forecast from RDAPS numerical weather forecast were compared and analyzed with average observed streamflow in Guem River Basin. Through this process, the improvement effect per method was estimated. The result of ESP considering weather information was satisfactory relatively based on long-term flow forecast simulation result. Discrepancy ratio analysis for estimating accuracy of probability forecast had similar result. It is expected to simulate more accurate flow forecast for RDAPS numerical weather forecast with improved daily scenario including time resolution, which is able to accumulate 3 hours rainfall or continuous simulation estimation.

The Evaluation on the Prediction Ratio of Landslide Hazard Area based on Geospatial Information (공간정보 기반 산사태 발생지역 예측비율 평가)

  • Lee, Geun-Sang;Lee, Ho-Jun;Go, Sin-Young;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.44 no.2
    • /
    • pp.113-124
    • /
    • 2014
  • Recently landslide occurs frequently by heavy rainfall, therefore there area many studies to analyze the vulnerable district of landslide and forecast the occurrence of landslide. This study analyzed soil characteristics in the occurrence district of landslide and the occurrence possibility of landslide ranked high in well draining soil as the result of frequency ratio according to the characteristics of drainage. Also as the result of frequency ratio of slope derived from DEM data, the occurrence possibility of landslide ranked high in slope range of $20{\sim}40^{\circ}$. And Also as the result of frequency ratio of aspect by geospatial analysis, the occurrence possibility of landslide ranked high in north aspect. Also, it is possible to evaluate the vulnerability of landslide by overlapping frequency ratio of the drainage of soil, slope and aspect. And future prediction ratio of landslide occurrence can be evaluated by performing the analysis and validation process respectively on the subject of the occurrence district of landslide.

Studies on Some Weather Factors in Chon-nam District on Plant Growth and Yield Components of Naked Barley (전남지역의 기상요인이 과맥의 생육 및 수량구성 요소에 미치는 영향)

  • Don-Kil Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.19
    • /
    • pp.100-131
    • /
    • 1975
  • To obtain basic information on the improvement of naked barley production. and to clarify the relation-ships between yield or yield components and some meteorogical factors for yield prediction were the objectives of this study. The basic data used in this study were obtained from the experiments carried out for 16 years from 1958 to 1974 at the Chon-nam Provincial Office of Rural development. The simple correlation coefficients and multiple regression coefficients among the yield or yield components and meteorogical factors were calculated for the study. Days to emergence ranged from 8 to 26 days were reduced under conditions of mean minimum air temperature were high. The early emergence contributed to increasing plant height and number of tillers as well as to earlier maximum tillering and heading date. The plant height before wintering showed positive correlations with the hours of sunshine. On the other hand, plant height measured on march 1st and March 20th showed positive correlation with the amount of precipitation and negative correlation with the hours of sunshine during the wintering or regrowth stage. Kernel weights were affected by the hours of sunshine and rainfall after heading, and kernel weights were less variable when the hours of sunshine were relatively long and rainfalls in May were around 80 to 10mm. It seemed that grain yields were mostly affected by the climatic condition in March. showing the negative correlation between yield and mean air temperature, minimum air temperature during the period. In the other hand, the yield was shown to have positive correlation with hours of sunshine. Some yield prediction equations were obtained from the data of mean air temperature, mean minimum temperature and accumulated air temperature in March. Yield prediction was also possible by using multiple regression equations, which were derived from yield data and the number of spikes and plant height as observed at May 20th.

  • PDF

A Method to Filter Out the Effect of River Stage Fluctuations using Time Series Model for Forecasting Groundwater Level and its Application to Groundwater Recharge Estimation (지하수위 시계열 예측 모델 기반 하천수위 영향 필터링 기법 개발 및 지하수 함양률 산정 연구)

  • Yoon, Heesung;Park, Eungyu;Kim, Gyoo-Bum;Ha, Kyoochul;Yoon, Pilsun;Lee, Seung-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.74-82
    • /
    • 2015
  • A method to filter out the effect of river stage fluctuations on groundwater level was designed using an artificial neural network-based time series model of groundwater level prediction. The designed method was applied to daily groundwater level data near the Gangjeong-Koryeong Barrage in the Nakdong river. Direct prediction time series models were successfully developed for both cases of before and after the barrage construction using past measurement data of rainfall, river stage, and groundwater level as inputs. The correlation coefficient values between observed and predicted data were over 0.97. Using the time series models the effect of river stage on groundwater level data was filtered out by setting a constant value for river stage inputs. The filtered data were applied to the hybrid water table fluctuation method in order to estimate the groundwater recharge. The calculated ratios of groundwater recharge to precipitation before and after the barrage construction were 11.0% and 4.3%, respectively. It is expected that the proposed method can be a useful tool for groundwater level prediction and recharge estimation in the riverside area.

Model development for the estimation of specific degradation using classification and prediction of data mining (데이터 마이닝의 분류 및 예측 기법을 적용한 비유사량 추정 모델 개발)

  • Jang, Eun-kyung;Kang, Woochul
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.215-223
    • /
    • 2020
  • The objective of this study is to develop a prediction model of specific degradation using data mining classification especially for the rivers in South Korea river. A number of critical predictors such as erosion and sediment transport were extracted for the prediction model considering watershed morphometric characteristics, rainfall, land cover, land use, and bed material. The suggested model includes the elevations at the mid relative area of the hypsometric curve of watershed morphomeric characteristics, the urbanization ratio, and the wetland and water ratio of land cover factors as the condition factors. The proposed model describes well the measured specific degradation of the rivers in South Korea. In addition, the development model was compared with the existing models, since the existing models based on different conditions and purposes show low predictability, they have a limit about the application of Korean River. Therefore, this study is focusing on improving the applicability of the existing model

Improvement of the Ensemble Streamflow Prediction System Using Optimal Linear Correction (최적선형보정을 이용한 앙상블 유량예측 시스템의 개선)

  • Jeong, Dae-Il;Lee, Jae-Kyoung;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.6 s.155
    • /
    • pp.471-483
    • /
    • 2005
  • A monthly Ensemble Streamflow Prediction (ESP) system was developed by applying a daily rainfall-runoff model known as the Streamflow Synthesis and Reservoir Regulation (SSARR) model to the Han, Nakdong, and Seomjin River basins in Korea. This study first assesses the accuracy of the averaged monthly runoffs simulated by SSARR for the 3 basins and proposes some improvements. The study found that the SSARR modeling of the Han and Nakdong River basins tended to significantly underestimate the actual runoff levels and the modeling of the Seomjin River basinshowed a large error variance. However, by implementing optimal linear correction (OLC), the accuracy of the SSARR model was considerably improved in predicting averaged monthly runoffs of the Han and Nakdong River basins. This improvement was not seen in the modeling of the Seomjin River basin. In addition, the ESP system was applied to forecast probabilistic runoff forecasts one month in advance for the 3 river basins from 1998 to 2003. Considerably improvement was also achieved with OLC in probabilistic forecasting accuracy for the Han and Nakdong River basins, but not in that of the Seomjin River basin.

Evaluation of LSTM Model for Inflow Prediction of Lake Sapgye (삽교호 유입량 예측을 위한 LSTM 모형의 적용성 평가)

  • Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.287-294
    • /
    • 2021
  • A Python-based LSTM model was constructed using a Tensorflow backend to estimate the amount of outflow during floods in the Gokgyo-cheon basin flowing into the Sapgyo Lake. To understand the effects of the length of input data used for learning, i.e., the sequence length, on the performance of the model, the model was implemented by increasing the sequence length to three, five, and seven hours. Consequently, when the sequence length was three hours, the prediction performance was excellent over the entire period. As a result of predicting three extreme rainfall events in the model verification, it was confirmed that an average NSE of 0.96 or higher was obtained for one hour in the leading time, and the accuracy decreased gradually for more than two hours in the leading time. In conclusion, the flood level at the Gangcheong station of Gokgyo-cheon can be predicted with high accuracy if the prediction is performed for one hour of leading time with a sequence length of three hours.

Prediction of the Suitable Area on Erosion Control Dam by Sediment Discharge in Small Forest Catchments (산림소유역 토사유출량에 의한 사방댐 시공적지 예측기법 개발)

  • Lee, Sung-Jae;Kim, Seon-Jeong;Lee, Eun-Jai;Ma, Ho-Seop
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.438-445
    • /
    • 2020
  • The characteristics of forest environmental factors were analyzed using the quantification theory (I) for prediction of the suitable area of erosion control dams. The results indicated that sediment discharge in small forest catchments was significantly correlated with dredging passage (0.7495) and age class (0.6000). In contrast, area (0.3416), slope gradient (0.3207), rainfall (0.3160), altitude (0.2990) and soil type (0.2192) were poorly correlated. Following quantification theory (I), we developed a selection decision table for erosion control dams based on sediment discharge rate as class I (highly suitable site, greater than 2.2496), class II (suitable site, 1.1248~2.2495), and class III (poorly suited site, lower than 1.1247).