• 제목/요약/키워드: Rainfall power

Search Result 149, Processing Time 0.026 seconds

Effective power for interrill erosion by rainfall-induced sheet flow (강우유발 면상흐름에 의한 세류간 침식에 대한 유효동력)

  • Shin, Seung Sook;Park, Sang Deog
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.665-676
    • /
    • 2018
  • Interrill erosion on a hillslope results from the combined action of the detachment of soil particles by raindrop impact and the sediment transport of surface runoff. This study newly defined the rainfall power which detaches soil particles and the sheet-flow power contributed to sediment transport in terms of energy expenditure rate of soil erosion and presented the effective power equation for interrill erosion by rainfall-induced sheet flow. The rainfall and sheet-flow power was evaluated by factors related with rainfall, slope, and runoff and coefficients of the power equation were analyzed based on references. Futhermore it was confirmed that the relative scales between the rainfall power and the sheet-flow power according to rainfall intensity reflect on the hydrological response and physical process of interrill erosion. From application of the field data for surface runoff and soil erosion it was verified that the rainfall and sheet-flow power is an appropriate equation to estimate a interrill erosion.

Analysis of Performance Characteristic for Small Scale Hydro Power Plant with Rainfall Condition Change (강우형태 변화에 의한 소수력발전소 성능특성분석)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.614-618
    • /
    • 2009
  • The effects of design parameters for small scale hydro power(SSHP) plants due to rainfall condition have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis for rainfall conditions based on KIER model show that the capacity and load factor of SSHP site had large difference between the period. Especially, the hydrologic performance of SSHP site such as design flowrate due to rainfall condition of recent period varied sensitively. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

  • PDF

Experimental study of rainfall spatial variability effect on peak flow variability using a data generation method (자료생성방법을 사용한 강우의 공간분포가 첨두유량의 변동성에 미치는 영향에 대한 실험적 연구)

  • Kim, Nam Won;Shin, Mun Ju
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.359-371
    • /
    • 2017
  • This study generated flood time series of ungauged catchments in the Andongdam catchment using a distributed rainfall-runoff model and data generation method, and extracted the peak flows of 50 catchments to investigate the effect of rainfall spatial variability on peak flow simulation. The model performance statistics for three gauged catchments were reasonable for all events. The flood time series of the 50 catchments were generated using distributed and mean rainfall time series as input. The distribution of the peak flow using the mean rainfall was similar or slightly different to that using the distributed rainfall when the distribution of the distributed rainfall was nearly uniform. However, the distribution of the peak flow using the mean rainfall was reduced significantly compared to that using the distributed rainfall when actual storms moved to the top or bottom of the study catchment, or the rainfall was randomly distributed. These cases were 35% of total number events. Therefore, the spatial variability of rainfall should be considered for flood simulation. In addition, the power law relationship estimated using the peak flow of gauged catchments cannot be used for estimating the peak flow of ungauged independent catchments due to latter's significant variation of the peak flow magnitude.

The Variations of Design Parameters for Small Scale Hydro Power Plant with Rainfall Condition (강우상태에 의한 소수력발전소 설계변수의 변화)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.138-141
    • /
    • 2008
  • The effects of design parameters for small scale hydro power(SSHP) plants due to rainfall condition have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis for rainfall conditions based on Weibull distribution show that the capacity and load factor of SSHP site had large difference between the variation of shape and scale parameter. Especially, the hydrologic performance of SSHP site due to variation of shape parameter varied more sensitive than the case of variation of scale parameter. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

  • PDF

Hydrologic Performance Change of Small Scale Hydro Power Plant with Rainfall Condition Change (강우형태변화에 의한 소수력발전소 수문학적 성능의 변화)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.56-61
    • /
    • 2009
  • The effects of design parameters for small scale hydro power(SSHP) plants due to climate change have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis far rainfall conditions based on KIER model show that the capacity and load factor of SSHP site had large difference between the period. Especially, the hydrologic performance of SSHP site due to rainfall condition of recent period varied in design flowrate sensitively. However climate change gave small effect in load factor of existing SSHP plant. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

The Variations of Performance Parameters for Small Scale Hydro Power Plant with Rainfall Condition (강우상태에 의한 소수력발전소 성능변수의 변화)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • New & Renewable Energy
    • /
    • v.4 no.3
    • /
    • pp.15-22
    • /
    • 2008
  • The effects of design parameters for small scale hydro power (SSHP) plants due to rainfall condition have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis for rainfall conditions based on Weibull distribution show that the capacity and load factor of SSHP site had large difference between the variation of shape and scale parameter. Especially, the hydrologic performance of SSHP site due to variation of shape parameter varied more sensitive than the case of variation of scale parameter. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

  • PDF

The Effects of Design Parameters for Small Scale Hydro Power Plant with Rainfall Condation (강우상태에 의한 소수력발전소 설계인자의 영향)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.43-49
    • /
    • 2008
  • The effects of design parameters for small scale hydro power(SSHP) plants due to rainfall condition have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis for rainfall conditions based on Weibull distribution show that the capacity and load factor of SSHP site had large difference between the variation of shape and scale parameter. Especially, the hydrologic performance of SSHP site due to variation of shape parameter varied more sensitive than the case of variation of scale parameter. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

The Effects of Design Parameters for Small Scale Hydro Power Plant with Climate Change (기후변화에 의한 소수력발전소 설계변수의 영향)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.267-272
    • /
    • 2009
  • The effects of design parameters for small scale hydro power(SSHP) plants due to rainfall condition have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis for rainfall conditions based on KIER model show that the capacity and load factor of SSHP site had large difference between the period. Especially, the hydrologic performance of SSHP site due to rainfall condition of recent period varied in design flowrate sensitively. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

  • PDF

A Study on the Rainfall Attenuation Adaptive Power Control System for Implementing B-WLL (B-WLL 구현을 위한 강우감쇠 적응형 출력제어장치에 대한 고찰)

  • 목진담;정희창
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.462-466
    • /
    • 1999
  • As the spectrum migrates to the higher frequency band around several milimeters wavelength for implementing wideband highspeed communications, it is more important to consider the channel attenuation characteristics of microwave signals. Microwave channels in 27GHz used in B-WLL system must be considered by compensating the power attenuation due to rainfall. So, in the design of one cell, the radiation power enhancement considering rainfall attenuation has an effort on the receiver in other cell as interference. In this paper we consider the main characteristics for B-WLL systems, optimum cell radius, and serviceable limit of heavy rainfall the design of the radiation power control system in case of enhancing the power that prevents from reducing the system capacity by interference.

  • PDF

Transmission Power Control for Compensation of Rainfall Attenuation at Mini-Hub (분산제어국 강우감쇠 보상을 위한 송신전력 제어방안)

  • Hong, Sung-Taek;Shin, Gang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2292-2294
    • /
    • 2004
  • At satellite communication system for flood forecasting and warning, VSAT system needs to good performance for aquisition of rainfall and water-level data. But, it has difficult for obtaining good performance because of the rainfall attenuation. Thus, in this paper, we introduced the efficiency plan of the transmission power control for Mini-Hub Station.

  • PDF