• Title/Summary/Keyword: Rainfall infiltration

Search Result 393, Processing Time 0.025 seconds

A Study of Stability Analysis on Unsaturated Weathered Slopes Based on Rainfall-induced Wetting (강우시 습윤에 의한 불포화 풍화토의 사면 안정 해석 연구)

  • 김재홍;박성완;정상섭;유지형
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.123-136
    • /
    • 2002
  • The infiltration of prolonged rainfall causes shallow slope failures on surficial slopes. Experiments performed on soil-water characteristic curves in weathered soils of three different types(SW, SP, SM) were used to construct a general equation for the soil-water characteristic curve. Based on this, the saturated depth by Green & Ampt model was compared with the results of numerical analyses and the range of application of Green & Ampt model was evaluated. It was found that the saturated depth occurred by infiltration on the surface of slopes has an inf1uence on the surficial stability of slopes md, the stability analysis of unsaturated soils calculated by using the soil-water characteristic curve of weathered soils was found to be a proper analysis for shallow slope failures due to rainfall.

Experimental Study on Rainfall Runoff Reduction Effects by Permeable Polymer Block Pavement (투수성 폴리머 블록 포장에 의한 우수 유출 저감 효과에 관한 실험적 연구)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.157-166
    • /
    • 2012
  • Most of the roads are paved with impermeable materials such as asphalt concrete and cement concrete, and in the event of heavy rainfall, rainwater directly flows into river through a drainage hole on the pavement surface. This large quantity of rainwater directly spilled into the river frequently leads to the flooding of urban streams, damaging lowlands and the lower reaches of a river. In recent years there has been a great deal of ongoing research concerning water permeability and drainage in pavements. Accordingly, in this research, a porous polymer concrete was developed for permeable pavement by using unsaturated polyester resin as a binder, recycled aggregate as coarse aggregate, fly ash and blast furnace slag as filler, and its physical and mechanical properties were investigated. Also, 3 types of permeable polymer block by optimum mix design were developed and rainfall runoff reduction effects by permeability pavement using permeable polymer block were analyzed based on hydraulic experimental model. The infiltration volume, infiltration ratio, runoff initial time and runoff volume in permeability pavement with permeable polymer block of $300{\times}300{\times}80$ mm were evaluated for 50, 100 and 200mm/hr rainfall intensity.

Analysis of Slope Stability with Consideration of the Wetting Front and Groundwater Level During Rainfall (강우시 습윤전선 및 지하수위를 고려한 사면의 안정성 해석)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.25-34
    • /
    • 2011
  • We applied a slope-stability analysis method, considering infiltration by rainfall, to the construction site where an express highway is being extended. Slope stability analysis that considers infiltration by rainfall can be classified into three methods: a method that considers the downward velocity of the wetting front, a method that considers the upward velocity of the groundwater level, and a method that considers both of these factors. The results of slope stability analysis using $Bishop^{\circ}{\Phi}s$ simplified method indicate that the safety factor due to the downward velocity of the wetting front decreases more rapidly than that due to the upward velocity of the groundwater level. For the third of the above methods, the safety factor decreases more rapidly than for the other two methods. Therefore, slope stability during rainfall should be analyzed with consideration of both the downward velocity of the wetting front and the upward velocity of the groundwater level.

Evaluation of Rain Garden for Infiltration Capability and Runoff Reduction Efficiency (레인가든의 침투성능 및 유출저감효과 평가)

  • Yoo, Chulsang;Lee, Jinwook;Cho, Eunsaem;Zhu, Ju Hua;Choi, Hanna
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.101-111
    • /
    • 2015
  • This study conducted a field experiment to estimate the characteristics of the rain garden installed at the site near Haman, also proposed a one-dimensional model to simulate the infiltration and runoff from the rain garden. This model was used to evaluate the rain garden using the rainfall data after the installation and during the last 10 years. Also, this model was applied to the annual maximum rainfall events to quantify the size of the impervious area that the rain garden can offset the adverse effect. The results are summarized below. (1) Hydraulic conductivity of the rain garden was estimated to be about 0.0188 m/hr by the variable-stage experiment. Also, the simulation experiment using the last 10 years rainfall data over the entire roof area showed that the infiltration amount is about 90.38% out of the total rainfall. (2) Infiltration simulation of the annual maximum rainfall events during last 10 years showed that the rain garden can offset the impervious area with its size about 30 times of the rain garden surface.

Slope Stability Analysis under Rainfall Condition by Using Multiple Slip Surfaces (다중 파괴면을 이용한 강우시 사면의 안정성 해석)

  • Kim, Minseok;Sagong, Myung;Kim, Soosam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.2
    • /
    • pp.11-18
    • /
    • 2007
  • Slope failure triggered by rainfall produces severe effects on the serviceability and stability of railway, Therefore, slope stability problem is one of the major concerns on the operation of railway. In this study, the rainfall conditions triggering slopes failure adjacent to railroads are investigated and the numerical analysis approach in consideration of infiltration and limit equilibrium method based upon multiple slip surfaces are proposed. The rainfall conditions triggering slope failure are as follow: cumulative rainfall is in the range of 150~500 mm, and duration is from 3 to 24 hours. Base upon the rainfall conditions, infiltration analysis and limit equilibrium method for infinite slope condition are carried out. The depth of infinite slope is assumed as 2 m and the multiple slip surfaces modeled with 16.7 cm interval from the bottom slip surface located at the 2 m depth. The assumed bottom slip surface is the location at which factor of safety is converging. The proposed approach shows more reasonable results than the results from the general codes assuming water table at slope surface. In addition, three dimensional plot of cumulative rainfall, rainfall duration, and factor of safety shows that slope stability analysis in consideration of rainfalll must account for cumulative rainfall (rainfall duration).

  • PDF

Infiltration Rate of Some Upland Soils in Korea (우리나라 밭토양의 수분침투속도(水分浸透速度)에 관하여)

  • Jung, Y.S.;Ryu, K.S.;Im, J.N.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 1980
  • The infiltration rates of the upland soils on hill side slope were investigated in situ using rainulator of which rainfall intensity was 100mm/hr. The soil moisture profile after the water infiltration was compared with that calculated from Youngs' equation. The results obtained are as follows: 1. Time required for infiltration rate to reach constant during rainfall was 15 to 25 min. The infiltration rate measured after 30 min was considered to be final infiltration rate. 2. The final infiltration rates of clay soils were lower than 10mm/hr., loamy soils 10 to 20., coarse loamy soils 20 to 30, and sandy soils higher than 30mm/hr., respectively. 3. The saturated hydraulic conductivity of the surface soil of Samgag sandy loam was 0.47mm/min., Songjeong clay loam0.16 mm/min., and Jeonnam silty clay loam 0.14mn/min., respectively. 4. The soil moisture profile calculated from Young's equation was in close agreement with measured in situ.

  • PDF

Analysis on the Effect of Infiltration Collector Well Installation on the Water Control (침투통의 설치에 따른 치수효과 분석)

  • Shim, Jae-hyun;Lee, Cheol-kyu;Lee, Jong-kook;Kim, Jin-young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.298-302
    • /
    • 2004
  • In this study, the runoff reduction effect was analyzed quantitatively focusing on the infiltration collector well located in the test area. On the basis of the analysis of the data obtained by examining the real-time measurement field data, the runoff reduction was examined through the measured rainfall of the year 2003 by applying the analysis result, with the PCSWMM model to the Kiheung-Gugal residential area, which is selected as the test basin. According to the analysis, it is revealed that an infiltration collector well can reduce up to $65\~98\%$ of runoffs, compared to a conventional one. For measured rainfalls, an infiltration collector well was able to reduce up to $15\~23\%$ of runoffs and $3\~25\%$ of peak runoffs. These results show that the effects of infiltration collector wells might vary with rainfall intensity and its duration. However, the infiltration collector well was confirmed as the one of the alternatives of runoff reduction facilities in urbanized catchment.

  • PDF

Estimation Method of Infiltration Capacity for Assessment of Drainage Capacity I (배수성능 평가를 위한 침투능 산정기법에 관한 연구 I)

  • Jeong, Jisu;Shim, Jeonghoon;Hwang, Youngcheol;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.49-55
    • /
    • 2019
  • Slope failure analysis entails proper understanding of various factors as well as the characteristics of ground conditions, which are difficult to achieve due to technological limits. Despite a number of past studies to clarify possible factors triggering slope failures, the impact of rainfall characteristics and infiltration rate, which are the key to estimation of slope stability in wet condition, on slope failures still remains unclear. This study has estimated permeability against various unit weights of soil based on constant head permeability tests using Jumunjin standard silica sand. One dimensional infiltration tests were conducted to estimate the infiltration capacity and the amount of infiltration taking into account the permeability and rainfall intensity. The applicability of existing empirical equations for the estimation of infiltration to granular soils was verified on the basis of the test results.

Development of an environmentally friendly precipitation treatment system utilizing open space in residential estates (주거단지의 외부공간을 활용한 친환경적 우수처리 시스템 개발)

  • Lee, Eun-Heui
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.3
    • /
    • pp.55-65
    • /
    • 2001
  • The hydrological cycle system in the city is generally characterized by quick runoff, bad infiltration, low evaporation rate, and so on. It is caused by sealing greens up with pavements. Also, there are lots of contradictory environmental problems, such as inundation, the lack of underground water and dryness in the city, caused by the urban drainage system which is mostly focused on the quick draining off rainfall. In addition, the technique joining rain and sewage, which has more dangers of inundation, occupies 66% between two Korean drainage systems which consist of joining and dividing system. There has been some need to convert the present drainage system into the environmentally friendly hydrological cycle system. This is a theoretical study to examine some foreign cases and suggested applicable methods in our country, focusing on the environmentalyl friendly system of rainfall drainage. The precipitation treatment system can be made up of some possible phases choosing from premanagement, utilization, infiltration, retention, and inducement phases. Therefore, this study mostly focused on infiltration, retention, and inducement phases. It is necessary to suggest the multifunctional utilization of outdoor spaces, especially applying in new constructing and re-constructing residential estates.

  • PDF

Waterproof Characteristic for Environmental Water Flows in Small Streams (소규모 하천 친환경 물흐름을 위한 차수특성)

  • Park, Min-Cheol;Kim, Seong-Goo;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.192-199
    • /
    • 2010
  • This research produced internal model tester ($2.0m{\times}2.0m{\times}1.0m$) to evaluate the field application of Paju Unjeong District water recycling system for small streams eco-friendly river bed disparity method for the first time in Korea and conducted comparative analysis of the Paju Unjeong District water recycling system field test results and infiltration rate result of internal tests by each rainfall intensity following surface material. Infiltration rate result of internal tests concrete pavement by rainfall intensity following surface material, asphalt pavement, bentonite mate, stabilized soil construction and mixed soil construction manifested low infiltration rate. On the contrary, compaction soil, grassland and water permeable packaging materials resulted in significant amount of infiltration rate. As for the field permeability test results, they were manifested similar tendency as indoor permeability test results and they satisfied the standard for standard of water permeability of domestic disparity facility (less than $1.0{\times}10-7cm$/sec). As compaction rate increased, unconfined compression strength increased as well while coefficient of water permeability decreased.

  • PDF