• 제목/요약/키워드: Rainfall infiltration

검색결과 388건 처리시간 0.025초

점토함유량에 따른 편마풍화토 비탈면의 안정성 평가 (Stability Evaluation of Weathered Gneiss Soil Slopes according to Clay Content)

  • 박현수;김병수
    • 한국지반환경공학회 논문집
    • /
    • 제24권10호
    • /
    • pp.15-23
    • /
    • 2023
  • 본 연구에서는 국내의 대표적 풍화토인 편마풍화토에 점토함유량 0%, 5%, 10%의 혼합토로 조성된 비탈면에 대해 강우 시 침투거동을 조사하고, 강우침투로 인한 불포화 비탈면의 안정성을 검토했다. 이를 위해 본 연구에서는 불포화 함수특성시험을 통해 함수특성곡선을 획득했고, 포화 삼축압축시험을 통해 강도정수를 얻었다. 얻어진 결과를 토대로, 침투해석과 안정해석을 통해 비탈면의 강우침투로 인한 포화대 형성과 안전성에 점토함유량과 선행강우 효과를 나타내는 초기흡수력이 미치는 영향에 대해 조사하였다. 그 결과, 지반의 초기흡수력이 높을수록 비탈면의 포화대 형성이 늦춰졌다는 것을 알았다. 또한 점토함유량이 증가할수록 지반의 전단강도 증대와 더불어 강우침투에 대한 저항성을 높이는 효과를 가지며, 비탈면의 안전성을 크게 향상시킨다는 것을 알 수 있었다.

Factors affecting the infiltration rate and removal of suspended solids in gravel-filled stormwater management structures

  • Guerra, Heidi B.;Yuan, Qingke;Kim, Youngchul
    • Membrane and Water Treatment
    • /
    • 제10권1호
    • /
    • pp.67-74
    • /
    • 2019
  • Apparent changes in the natural hydrologic cycle causing more frequent floods in urban areas and surface water quality impairment have led stormwater management solutions towards the use of green and sustainable practices that aims to replicate pre-urbanization hydrology. Among the widely documented applications are infiltration techniques that temporarily store rainfall runoff while promoting evapotranspiration, groundwater recharge through infiltration, and diffuse pollutant reduction. In this study, a laboratory-scale infiltration device was built to be able to observe and determine the factors affecting flow variations and corresponding solids removal through a series of experiments employing semi-synthetic stormwater runoff. Results reveal that runoff and solids reduction is greatly influenced by the infiltration capability of the underlying soil which is also affected by rainfall intensity and the available depth for water storage. For gravel-filled structures, a depth of at least 1 m and subsoil infiltration rates of not more than 200 mm/h are suggested for optimum volume reduction and pollutant removal. Moreover, it was found that the length of the structure is more critical than the depth for applications in low infiltration soils. These findings provide a contribution to existing guidelines and current understanding in design and applicability of infiltration systems.

공기흐름을 고려한 수리-역학적 연동모델에 의한 불포화 토사사면의 안정해석 (Stability Analysis of Unsaturated Soil Slope by Coupled Hydro-mechanical Model Considering Air Flow)

  • 조성은
    • 한국지반공학회논문집
    • /
    • 제32권1호
    • /
    • pp.19-33
    • /
    • 2016
  • 강우의 침투가 사면안정에 미치는 영향을 평가하기 위해 강우의 침투해석을 수행하고 그 결과를 한계평형해석에 적용하는 안정해석 절차가 널리 사용되고 있으나 지반은 흙 입자, 물과 공기로 이루어진 3상의 물질이므로 사면을 통한 강우의 침투를 엄밀하게 해석하기 위해서는 물, 공기의 흐름과 흙의 응력-변형거동이 완전 연관된(fully coupled) 식을 고려해야 한다. 본 연구에서는 공기와 물의 흐름이 사면의 역학적 안정에 미치는 영향을 연구하기 위하여 우리나라에 널리 분포하는 풍화잔류토 사면에 대하여 3상이 연동된 흐름해석을 수행하였다. 강우침투가 사면안정에 미치는 영향을 평가하기 위하여 강도감소법에 의한 사면 안정해석을 수행하였다. 해석결과에 의하면 침투하는 강우가 공기를 밀어내 공기의 흐름이 발생하고 공기압이 증가하였다. 이러한 간극에서의 물과 공기의 상호작용은 사면의 응력-변형거동에 영향을 미쳐 공기의 흐름을 고려하지 않은 흙 입자-물의 연관해석의 결과와는 다른 사면안정 거동을 보였다.

식생체류지의 원지반 침투율이 유출량 저감효과에 미치는 영향모의 (The Effects of Infiltration Rate of Foundation Ground Under the Bioretention on the Runoff Reduction Efficiency)

  • 전지홍;정광욱
    • 한국물환경학회지
    • /
    • 제35권1호
    • /
    • pp.72-77
    • /
    • 2019
  • Soil type in LID infiltration practices plays a major role in runoff reduction efficacy. In this study, the effects of infiltration rate of foundation ground under bioretention on annual runoff reduction rate was evaluated using LIDMOD3 which is a simple excel based model for evaluating LID practices. A bioretention area of about 3.2 % was required to capture surface runoff from an impervious area for a 25.4 mm rainfall event. The relative error of runoff from bioretention using LIDMOD3 is 10 % less than that of SWMM5.1 for a total rainfall event of 257.1 mm during the period of Aug. 1 ~ 18, 2017, hence, the applicability of LIDMOD3 was confirmed. Annual runoff reduction rates for the period 2008 ~ 2017 were evaluated for various infiltration rates of foundation ground under the bioretention which ranged from 0.001 to 0.600 m/day and were converted to annual runoff reduction for hydrologic soil group. The runoff reduction rates within hydrologic soil group C and D were steeply increased through increased infiltration rate but not steep within hydrologic A and B with reduction rates ranging from 53 ~ 68 %. The estimated time required to completely empty a bioretention which has a storage depth of 0.632 m is 3.5 ~ 6.9 days and we could assume that the annual average of antecedent rainfall is longer than 3.5 ~ 6.9 days. Therefore, we recommended B type as the minimum hydrologic soil group installed LID infiltration practices for high runoff reduction rate.

토사절토사면의 침투특성에 관한 연구 (A Study on the Infiltration Characteristics of Soil Cut-Slope)

  • 이정엽;구호본;김승현;배규진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.735-738
    • /
    • 2005
  • The purpose of this study is the infiltration characteristics of soil cut-slope by rainfall. Stability analysis of soil cut-slopes has been conducted by limit equilibrium method on Seep/w and finite element method on Slope/w. Result is same as following. First. the hour when seepage line and groundwater in contact is proportionate from rainfall rate condition and upper natural slope gradient condition which is identical. Second, when seepage line and groundwater is contact, seepage line moves gradually at soil cut-slope surface. Finally, seepage line is formed similarly with soil cut-slope gradient. Third, when rainfall is ended, from the recording upper natural slope where the hour will pass it is stabilized

  • PDF

NRCS 침투모형에 의한 경사진 사면의 지하수위 평가 (Groundwater Level Estimation on a Slope by NRCS model)

  • 문영일;신동준;오태석;이수곤
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.553-556
    • /
    • 2008
  • Slope-related disasters have been occurred in July and September due to the typhoon and concentrated precipitation. It is shown that rainfall is the most important factor which leads to slope-related disasters in Korea. In this paper, slope analysis was applied by rainfall intensity as a rain factor and was assumed that all rainfall would be infiltrated on the slope. Also, groundwater level on a slope was estimated by using SEEP/W program according to infiltration. Where, amount of Infiltration can be calculated by using NRCS model. Finally, safety factor on a slope was invested by groundwater level.

  • PDF

Study on Rainfall Infiltration Into Vault of Near-surface Disposal Facility Based on Various Disposal Scenarios

  • Kwon, Mijin;Kang, Hyungoo;Cho, Chunhyung
    • 방사성폐기물학회지
    • /
    • 제19권4호
    • /
    • pp.503-515
    • /
    • 2021
  • In this study, rainfall infiltration in vault of the second near-surface disposal facility was evaluated on the basis of various disposal scenarios. A total of four different disposal scenarios were examined based on the locations of the radioactive waste containers. A numerical model was developed using the FEFLOW software and finite element method to simulate the behavior of infiltrated water in each disposal scenario. The effects of the disposal scenarios on the infiltrated water were evaluated by estimating the flux of the infiltrated water at the vault interfaces. For 300 years, the flux of infiltrated water flowing into the vault was estimated to be 1 mm/year or less for all scenario. The overall results suggest that when the engineered barriers are intact, the flux of infiltrated water cannot generate a sufficient pressure head to penetrate the vault. In addition, it is confirmed that the disposal scenarios have insignificant effects on the infiltrated water flowing into the vault.

산지유역의 초과우량 추정 모형 (Rainfall Excess Model for Forest Watersheds)

  • 남선우;최은호
    • 물과 미래
    • /
    • 제23권3호
    • /
    • pp.351-361
    • /
    • 1990
  • 식생계로 피복되고 투수성 토양을 갖는 산지유역에서의 점유출량 결정을 위해 초과우량 추정모형을 유도하였다. 산림에 의한 canopy차단 및 풀, 낙엽, 농작물 등에 의한 지표피복차단저축을 고려하고, 유역 포화시의 증발산량을 계산하여 관측강우로부터 지표 흙에 도달되는 순강우량을 결정하였다. 부정강우사상에 적용할 수 있도록 수정된 Green-Ampt모형으로부터 침투율을 결정하여 초과우량을 산정하였고, IHP 대표시험유역 가운데 장평유역의 실제호우사상에 적용하여 손실율, 유출율 및 유출발생시간 등을 결정, 적용성 여부를 검토하였다.

  • PDF

A Comparative Study Between High and Low Infiltration Soils as Filter Media in Low Impact Development Structures

  • Guerra, Heidi B.;Geronimo, Franz Kevin;Reyes, Nash Jett;Jeon, Minsu;Choi, Hyeseon;Kim, Youngchul;Kim, Lee-Hyung
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.130-130
    • /
    • 2021
  • The increasing effect of urbanization has been more apparent through flooding and downstream water quality especially from heavy rainfalls. In response, stormwater runoff management solutions have focused on runoff volume reduction and treatment through infiltration. However, there are areas with low infiltration soils or are experiencing more dry days and even drought. In this study, a lab-scale infiltration system was used to compare the applicability of two types of soil as base layer in gravel-filled infiltration systems with emphasis on runoff capture and suspended solids removal. The two types of soils used were sandy soil representing a high infiltration system and clayey soil representing a low infiltration system. Findings showed that infiltration rates increased with the water depth above the gravel-soil interface indicating that the available depth for water storage affects this parameter. Runoff capture in the high infiltration system is more affected by rainfall depth and inflow rates as compared to that in the low infiltration system. Based on runoff capture and pollutant removal analysis, a media depth of at least 0.4 m for high infiltration systems and 1 m for low infiltration systems is required to capture and treat a 10-mm rainfall in Korea. A maximum infiltration rate of 200 mm/h was also found to be ideal to provide enough retention time for pollutant removal. Moreover, it was revealed that low infiltration systems are more susceptible to horizontal flows and that the length of the structure may be more critical that the depth in this condition.

  • PDF

장기 모니터링 자료를 활용한 침입수 산정 방법론별 특성 분석 (Characterization of Infiltration Analyses Using Long-Term Monitoring Flow Data)

  • 이재현;김인섭;오재일;박철휘
    • 한국물환경학회지
    • /
    • 제25권3호
    • /
    • pp.411-418
    • /
    • 2009
  • The analysis of characteristics of water use evaluation and nighttime domestic flow evaluation was performed by using result from flow monitoring and surveying water supply records and nighttime domestic flow for a year. The analysis of correlations showed that, for both sites, the infiltration ratio and wastewater flow have shown a good relationship with high correlation factor and that the calculation of wastewater flow was highly affected by monthly rainfall depth as well as number of rain days. From this result, it was concluded that the measurement of infiltration should be performed when the rainfall does not significantly affect the sewer flow. Also, it is notable that each value of calculated using method for infiltration evaluation are not comparable to each other, but independent methods. In selecting of evaluation method for infiltration, therefore, a great emphasis should be imposed to the character of area and the seasonal factor in order to select optimal one. It is desirable way for evaluating infiltration and reduction ratio using result from an optimal method.