• Title/Summary/Keyword: Rainfall event

Search Result 536, Processing Time 0.032 seconds

Evaluation and Design of Infiltration and Filtration BMP Facility (침투 여과형 비점오염저감시설의 설계 및 평가)

  • Choi, Ji-Yeon;Maniquiz, Marla Chua;Lee, So-Young;Kang, Chang-Guk;Lee, Jung-Yong;Kang, Hee-Man;Kim, Lee-Hyung
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.5
    • /
    • pp.475-481
    • /
    • 2010
  • Lots of pollutants typically originating from urban transportation are accumulating on the paved surfaces during dry periods and are washed-off directly to the river during a storm. Also, paved surfaces are contributing to increase in peak flows and volume of stormwater flows. These are the main reasons why the water quality of rivers and lakes remain polluted and still below standards. Currently, several management practices are being applied in developed countries but the design standards are still lacking. This research was conducted to develop a treatment technology that can be useful to address the problems concerning runoff quality and quantity. A lab scale infiltration device consisting of a pretreatment tank and media zone was designed and tested for various flow regimes characterizing the low, average and high intensity rainfall. Based on the experiments, the high intensity flow resulted to increase in outflow event mean concentration (EMC) of pollutants, about twice as much as the average outflow EMC. However, 78 to 88% of the total suspended solids were captured and retained in the pretreatment tank because of sedimentation. The removal of heavy metals such as zinc and lead was greatly affected by the vertical placement of woodchip layer prior to the media zone. It was observed that the high carbon content (almost 50%) in the woodchip provided opportunity for enhancing its uptake of metal by adsorption. The findings implied that the reduction of pollutants can be greatly achieved by means of proper pretreatment to allow for settling of particles with a combination of using high carbon source media like woodchip and a geotextile mat to reduce the flow before filtering into the media zone and finally discharging to the drainage system.

Developing algorithms for providing evacuation and detour route guidance under emergency conditions (재난.재해 시 대피 및 우회차량 경로 제공 알고리즘 개발)

  • Yang, Choong-Heon;Son, Young-Tae;Yang, In-Chul;Kim, Hyun-Myoung
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.129-139
    • /
    • 2009
  • The transportation network is a critical infrastructure in the event of natural and human caused disasters such as rainfall, snowfall, and terror and so on. Particularly, the transportation network in an urban area where a large number of population live is subject to be negatively affected from such events. Therefore, efficient traffic operation plans are required to assist rapid evacuation and effective detour of vehicles on the network as soon as possible. Recently, ubiquitous communication and sensor network technology is very useful to improve data collection and connection related emergency information. In this study, we develop a specific algorithm to provide evacuation route and detour information only for vehicles under emergency situations. Our algorithm is based on shortest path search technique and dynamic traffic assignment. We perform the case study to evaluate model performance applying hypothetical scenarios involved terror. Results show that the model successfully describe effective path for each vehicle under emergency situation.

  • PDF

Study on the influence of sewer network simplification on urban inundation modelling results (하수관망의 간소화가 도시침수 모의에 미치는 영향 분석에 관한 연구)

  • Lee, Seung-Soo;Pakdimanivong, Mary;Jung, Kwan-Sue;Kim, Yeonsu
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.4
    • /
    • pp.347-354
    • /
    • 2018
  • In urban areas, runoff flow is drained through sewer networks as well as surface areas. Therefore, it is very important to consider sewer networks as a component of hydrological drainage processes when conducting urban inundation modelling. However, most researchers who have implemented urban inundation/flood modelling, instinctively simplified the sewer networks without the appropriate criteria. In this research, a 1D-2D fully coupled urban inundation model is applied to estimate the influence of sewer network simplification on urban inundation modelling based on the dendritic network classification. The one-dimensional (1D) sewerage system analysis model, which was introduced by Lee et al. (2017), is used to simulate inlet and overflow phenomena by interacting with surface flow. Two-dimensional (2D) unstructured meshes are also applied to simulate surface flow and are combined with the 1D sewerage analysis model. Sewer network pipes are simplified based on the dendritic network classification method, namely the second and third order, and all cases of pipes are conducted as a control group. Each classified network case, including a control group, is evaluated through their application to the 27 July 2011 extreme rainfall event, which caused severe inundation damages in the Sadang area in Seoul, South Korea. All cases are compared together regarding inundation area, inflow discharge and overflow discharge. Finally, relevant criterion for the simplification method is recommended.

The Effect of Rain Fall Event on $CO_2$ Emission in Pinus koraiensis Plantation in Mt. Taehwa (강우 이벤트가 태화산 잣나무 식재림의 각 발생원별 $CO_2$ 발생량에 미치는 영향)

  • Suh, Sanguk;Park, Sungae;Shim, Kyuyoung;Yang, Byeonggug;Choi, Eunjung;Lee, Jaeseok;Kim, Taekyu
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.389-394
    • /
    • 2014
  • This study was conducted to find out the soil $CO_2$ emission characteristic due to rain fall pattern and intensity changes. Using Automatic Opening and Closing Chambers (AOCCs), we have measured annual soil respiration changes in Pinus koraiensis plantation at Seoul National University experimental forest in Mt. Taehwa. In addition, we have monitored heterotrophic respiration at trenching sites ($4{\times}6m$). Based on the one year data of soil respiration and heterotrophic respiration, we observed that 24% of soil respiration was derived from root respiration. During the rainy season (end of July to September), soil respiration at trenching site and trenching with rainfall interception site were measure during portable soil respiration analyzer (GMP343, Vaisala, Helsinki, Finland). Surprisingly, even after days of continuous heavy rain, soil water content did not exceed 20%. Based on this observation, we suggest that the maximum water holding capacity is about 20%, and relatively lower soil water contents during the dry season affect the vital degree of trees and soil microbe. As for soil respiration under different rain intensity, it was increased about 14.4% under 10 mm precipitation. But the high-intensity rain condition, such as more than 10 mm precipitation, caused the decrease of soil respiration up to 25.5%. Taken together, this study suggests that the pattern of soil respiration can be regulated by not only soil temperature but also due to the rain fall intensity.

Analysis of the Controlling Factors of an Urban-type Landslide at Hwangryeong Mountain Based on Tree Growth Patterns and Geomorphology (부산 황령산에서의 수목 성장 및 지형 특성을 이용한 도시 산사태의 발생원인 분석)

  • Choi, Jin-Hyuck;Kim, Hyun-Tae;Oh, Jae-Yong;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.281-293
    • /
    • 2011
  • We investigated the causes and characteristics of a landslide at Hwangryeong Mountain, Busan, based on aerial photos, annual precipitation data, rock fracture patterns, and geomorphic features using GIS Software, and a statistical analysis of tilted trees. The analyzed slope shows evidence of a previous slope failure event and the possibility of future failures. Although the NW-SE trending slope was relatively stable until 1975, a large-scale slope failure occurred between 1975 and 1985 due to complex factors, including favorably oriented geologic structures, human activity, and heavy rain. This indicates that a detailed study of geologic structures, slope stability, and rainfall characteristics is important for slope cuttings that could be a major factor and cause of urban landsliding events. The statistic analysis of tilted trees shows a slow progressive creeping type of mass wasting with rock falls oblique to the dip of the slope, with the slope having moved towards the west since 1985. A concentration of tree tilting has developed on the northwestern part of the slope, which could reach critical levels in the future. The analysis of deformed trees is a useful tool for understanding landslides and for predicting and preventing future landslide events.

Application of AGNPS Model for Nitrogen and Phosphorus Load in a Stream Draining Small Agricultural Watersheds (소규모 농업유역에서 질소와 인의 하천 부하에 대한 AGNPS 모형의 적용)

  • Kim, Min-Kyeong;Choi, Yun-Yeong;Kim, Bok-Jin;Lim, Jun-Young;Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.3
    • /
    • pp.192-200
    • /
    • 2001
  • The event-based agricultural non-point source(AGNPS) pollution model was applied to estimate the loads of nitrogen and phosphorus in a stream draining small agricultural watersheds. Calibration and verification of the model were performed using observed data collected from rainfall events in the Imgo watersheds during 1997-1998. Parameter calibrations were made for the runoff curve number. The peak flow volumes in the watersheds were well reproduced by the modified model. Average deviation between observed and simulated values was 10%, and this match was confirmed by the coefficient of efficiency value of 0.97. The deviations tended to increase as the peak flows increased. The simulated total N concentrations in the stream water were fairly close to the measured values, and the coefficient of efficiency in the estimation was 0.93. However, there were relatively large variations between calculated and observed values of total P concentration, and the coefficient of efficiency in the estimation was 0.74. Any inaccuracies that arise in estimating runoff flow and nutrient loading can not be explained exactly and further adjustment and refinements may be needed for application of AGNPS in agricultural watersheds. With this restrictions in mind, it can be concluded that AGNPS can provide realistic estimates of nonpoint source nutrient yields.

  • PDF

Study on Degradation Characteristic of Plastic Artwork for Conservation (플라스틱 작품 보존을 위한 열화 특성 연구)

  • Yu, Ji A;Cho, Ha Jin;Han, Ye Bin;Lee, Hyun Ju;Lee, Sang Jin;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.31 no.2
    • /
    • pp.87-94
    • /
    • 2015
  • Plastic artwork can be appeared crack, change of color and whitening event by various environment conditions. A large scale plastic artwork often exhibits in outside it will be directly degraded by physical and chemical degradation factor such as strong sunlight, high humidity and rainfall. We should know degradation characteristic of plastics to prevent these damages. In this study, we studied degradation characteristic of plastics (5 types of wide use plastics; polypropylene, polystyrene, polyethylene, polyvinyl chloride, polyurethane) depending on various artificial degradation conditions such as high temperature, ultraviolet and these complex conditions (high temperature and ultraviolet). As a result, polypropylene, polystyrene and polyethylene show the most visible change especially polypropylene, polystyrene. Polypropylene didn't show a great change degree of tensile strength and contact angle, on the other hand polystyrene did. Polypropylene and polystyrene weakened by photo degradation, polyvinyl chloride and polyurethane had relatively good light stability. Also the high temperature and complex conditions were most degradation characteristic. High temperature worked for degradation catalyst because its energy can not enough worked for cut off binding energy of plastics while ultraviolet condition effected as directly degradation condition. Though following results, we expect it can be applied to investigation of degradation factor depending on plastic artwork materials and basic result of plastic artworks conservation.

Application of LID Methods for Sustainable Management of Small Urban Stream Using SWMM (SWMM 모델을 이용한 지속 가능한 도시 소하천 관리를 위한 LID 기법의 적용 방안 연구)

  • Han, Yanghui;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.691-697
    • /
    • 2014
  • Though the upper stream basin area of Gwanpyung-Cheon in Daejeon, Korea is protected as Green Belt Zone, the stream is under constant environmental pressure due to current agricultural practices and infrastructure development in its basin area. To develop appropriate integrated water resources management plan for the stream, it is necessary to consider not only water quality problems but also water quantity aspect. In this study, Storm Water Management Model (SWMM) was calibrated and validated with sets of field measurements to predict for future water flow and water quality conditions for any rainfall event. While flow modeling results showed good agreement by showing correlation coefficient is greater than 0.9, water quality modeling results showed relatively less accurate levels of agreements with correlation coefficient between 0.67 and 0.87. Hypothetical basin development scenarios were developed to compare effect on stream water quality and quantity when Low Impact Development (LID) technologies are applied in the basin. The results of this study can be used effectively in decision making processes of urban development Gwanpyung-Cheon area by comparing basin management alternatives such as LID methods.

Evaluation of Suspended Solids and Eutrophication in Chungju Lake Using CE-QUAL-W2 (CE-QUAL-W2를 이용한 충주호의 부유물질 및 부영양화 모의평가)

  • Ahn, So Ra;Kim, Sang Ho;Yoon, Sung Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1115-1128
    • /
    • 2013
  • The purpose of this study is to evaluate the suspended solids and eutrophication processes relationships in Chungju lake using CE-QUAL-W2, two-dimensional (2D) longitudinal/vertical hydrodynamic and water quality model. For water quality modeling, the lake segmentation was configured as 7 branches system according to their shape and tributary distribution. The model was calibrated (2010) and validated (2008) using 2 years of field data of water temperature, suspended solids (SS), total nitrogen (TN), total phosphorus (TP) and algae (Chl-a). The water temperature began to increase in depth from April and the stratification occurred at about 10 m early July heavy rain. The high SS concentration of the interflow density currents entering from the watershed was well simulated especially for July 2008 heavy rainfall event. The simulated concentration range of TN and TP was acceptable, but the errors might occur form the poor reflection for sedimentation velocity of nitrogen component and adsorption-sediment of phosphorus in model. The concentration of Chl-a was simulated well with the algal growth patterns in summer of 2010 and 2008, but the error of under estimation may come from the use of width-averaged velocity and concentration, not considering the actual to one side inclination by wind effect.

Applicability Evaluation of Probability Matching Method for Parameter Estimation of Radar Rain Rate Equation (강우 추정관계식의 매개변수 결정을 위한 확률대응법의 적용성 평가)

  • Ro, Yonghun;Yoo, Chulsang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1765-1777
    • /
    • 2014
  • This study evaluated PMM (Probability Matching Method) for parameter estimation of the Z - R relation. As a first step, the sensitivity analysis was done to decide the threshold number of data pairs and the data interval for the development of a histogram. As a result, it was found that at least 1,000 number of data pairs are required to apply the PMM for the parameter estimation. This amount of data is similar to that collected for two hours. Also, the number of intervals for the histogram was found to be at least 100. Additionally, it was found that the matching the first-order moment is better than the cumulative probability, and that the data pairs comprising 30 to 100% are better for the PMM application. Finally, above findings were applied to a real rainfall event observed by the Bislsan radar and optimal parameters were estimated. The radar rain rate derived by applying these parameters was found to be well matched to the rain gauge rain rate.